Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aims: The study aims (1) to evaluate the effect of Mesorhizobium tianshanense on plant proline and polyamine levels of Lotus tenuis and its modulatory effect during plant response to short-term salt stress and (2) to compare these effects with those caused by mycorrhizal symbiosis. Methods: Experiments consisted of a randomized factorial design of two factors: salinity (two levels, 0 and 150 mM NaCl) and symbiosis (three levels, uninoculated, Glomus intraradices, and M. tianshanense). Results: Salinization led to increased proline levels regardless of plant organ and symbiotic status, excepting mycorrhizal L. tenuis roots. Salinity diminished the total polyamine level of control and rhizobial plants but not in mycorrhizal ones. Variations in the pattern response of the three individual polyamines (putrescine, spermidine, and spermine) differed in accordance with the symbiotic status of the plant, highlighting a divergence on proline and polyamine metabolisms between rhizobial and mycorrhizal symbiosis. Conclusions: Spermidine and spermine contributed the most with the salt-induced root polyamine increment observed upon salinization in roots of nodulated plants, suggesting that these polyamines might mediate an adaptive role of the plant-M. tianshanense symbiosis in L. tenuis plants growing in a saline environment. © 2012 Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity
Autor:Echeverria, M.; Sannazzaro, A.I.; Ruiz, O.A.; Menéndez, A.B.
Filiación:CONICET-FAUBA, Facultad de Agronomía, Universidad de Buenos Aires, INBA, Instituto de Investigaciones en Biociencias Agrícolas y Ambientales, Av. San Martín 4453, (C1417DSE) Buenos Aires, CABA, Argentina
Unidad de Biotecnología 3, IIB-IINTECH/UNSAM-CONICET, Buenos Aires, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Glomus intraradices; Lotus tenuis; Mesorhizobium tianshanense; Polyamines; Proline; amino acid; divergence; dose-response relationship; experimental study; metabolism; nodulation; plant community; rhizobacterium; root; salinity; salinization; symbiosis; Glomus intraradices; Lotus tenuis; Mesorhizobium; Mesorhizobium tianshanense
Año:2013
Volumen:364
Número:1-2
Página de inicio:69
Página de fin:79
DOI: http://dx.doi.org/10.1007/s11104-012-1312-6
Título revista:Plant and Soil
Título revista abreviado:Plant Soil
ISSN:0032079X
CODEN:PLSOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0032079X_v364_n1-2_p69_Echeverria

Referencias:

  • Allan, G.J., Francisco-Ortega, J., Santos-Guerra, A., Boerner, E., Zimmer, E.A., Molecular phylogenetic evidence for the geographic origin and classification of Canary Island Lotus (Fabaceae: Loteae) (2004) Mol Phylogenet Evol, 32, pp. 123-138
  • Aziz, A., Martin-Tanguy, J., Larher, F., Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride (1998) Physiol Plantarum, 104, pp. 195-202
  • Beringer, J.E., R factor transfer in Rhizobium leguminosarum (1974) J Gen Microbiol, 84, pp. 188-198
  • Bouchereau, A., Aziz, A., Larher, F., Martin-Tanguy, J., Polyamines and environmental challenges: recent development (1999) Plant Sci, 140, pp. 103-125
  • Campestre, M.P., Bordenave, C.D., Origone, A.C., Menéndez, A.B., Ruiz, O.A., Rodríguez, A.A., Maiale, S.J., Polyamine catabolism is involved in response to salt stress in soybean hypocotyls (2011) J Plant Physiol, 168, pp. 1234-1240
  • Chattopadhyay, M.K., Tabor, C.W., Tabor, H., Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe) (2002) P Natl Acad Sci, 99, pp. 10330-10334
  • Cohen, S.S., (1998) A Guide to the Polyamines, , New York: Oxford University Press
  • Colmer, T.D., Epstein, E., Dvorak, J., Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat × Lophopyrum elongatum (host) A. Löve amphiploid (1995) Plant Physiol, 108, pp. 1715-1724
  • da Rocha, I.M.A., Vitorello, V.A., Silva, J.S., Ferreira-Silva, S.L., Viégas, R.A., Silva, E.N., Silveira, J.A.G., Exogenous ornithine is an effective precursor and the δ-ornithine amino transferase pathway contributes to proline accumulation under high N recycling in salt-stressed cashew leaves (2012) J Plant Physiol, 169, pp. 41-49
  • Diouf, D., Duponnois, R., Ba, A.T., Neyra, M., Lesueur, D., Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions (2005) Aust J Plant Physiol, 32, pp. 1143-1152
  • Erdei, L., Szegletes, Z., Barabas, K., Pestenacz, A., Responses in polyamine titer under osmotic and salt stress on sorghum and maize seedlings (1996) J Plant Physiol, 147, pp. 599-603
  • Estrella, M.J., Munoz, S., Soto, M.J., Ruiz, O., Sanjuan, J., Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina) (2009) Appl Environ Microbiol, 75, pp. 1088-1098
  • Federico, R., Angelini, R., Polyamine catabolism in plants (1991) Biochemistry and physiology of polyamines in plants, pp. 41-56. , In: Slocum RD, Flores HE (eds.) Boca Raton, FL, CRC Press
  • Foreman, J., Demidchik, V., Bothwell, J.H.F., Mylona, P., Miedema, H., Angel Torres, M., Linstead, P., Dolan, L., Reactive oxygen species produced by NADPH oxidase regulate plant cell growth (2003) Nature, 422, pp. 442-446
  • Fujihara, S., Biogenic amines in rhizobia and legume root nodules (2009) Microbes Environ, 24, pp. 1-13
  • Gaspar, T., Kevers, C., Hausman, J.-F., Faivre-Rampant, O., Boyer, N., Dommes, J., Penel, C., Greppin, H., Integrating phytohormone metabolism and action with primary biochemical pathways. I. Interrelationships between auxins, cytokinins, ethylene and polyamines in growth and development processes (2000) Integrated Plant Systems, pp. 163-191. , H. Greppin, C. Penel, W. J. Broughton, and R. Strasser (Eds.), Switzerland: University of Geneva
  • Ghosh, N., Adak, M.K., Ghosh, P.D., Gupta, S., Sen Gupta, D.N., Mandal, C., Differential responses of two rice varieties to salt stress (2011) Plant Biotechnol Rep, 5, pp. 89-103
  • Goicoechea, N., Szalai, N.G., Antolín, M.C., Sánchez-Díaz, M., Paldi, E., Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa (1998) J Plant Physiol, 153, pp. 706-711
  • Groppa, M.D., Benavides, M.P., Polyamines and abiotic stress: recent advances (2008) Amino Acids, 34, pp. 35-45
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K., Bohnert, H.J., Plant cellular and molecular responses to high salinity (2000) Annu Rev Plant Phys, 51, pp. 463-499
  • Hennion, F., Frenot, Y., Martin-Tanguy, J., High flexibility in growth and polyamine composition of the crucifer Pringlea antiscorbutica in relation to environmental conditions (2006) Physiol Plant, 127, pp. 212-224
  • Hoagland, D.R., Arnon, D.L., The water culture method for growing plants without soil (1950) Calif Agricult Exp Stat Circ, 374, pp. 1-39
  • Jiménez-Bremont, J.F., Ruiz, O.A., Rodríguez-Kessler, M., Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress (2007) Plant Physiol Bioch, 45, pp. 812-821
  • Jiménez-Zurdo, J.I., García-Rodríguez, F.M., Toro, N., The Rhizobium meliloti putA gene: its role in the establishment of the symbiotic interaction with alfalfa (1997) Mol Microbiol, 23, pp. 85-93
  • Jindal, V., Atwala, A., Sekhon, B.S., Singh, R., Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity (1993) Plant Physiol Bioch, 31, pp. 475-481
  • King, N.D., Hojnacki, D., O'Brian, M.R., The Bradyrhizobium japonicum proline biosynthesis gene proC is essential for symbiosis (2000) Appl Environ Microbiol, 66, pp. 5469-5471
  • Kirkbride Jr., J.H., The scientific name of narrow-leaf trefoil (2006) Crop Sci, 46, pp. 2169-2170
  • Kohl, D.H., Schubert, K.R., Carter, M.B., Hagedorn, C.H., Shearer, G., Proline metabolism in N2-fixing root nodules: energy transfer and regulation of purine synthesis (1988) P Natl Acad Sci, 85, pp. 2036-2040
  • Kytöviita, M.-M., Sarjala, T., Effects of defoliation and symbiosis on polyamine levels in pine and birch (1997) Mycorrhiza, 7, pp. 107-111
  • Legocka, J., Kluk, A., Effect of salt and osmotic stress on changes in polyamine content and arginine decarboxylase activity in Lupinus luteus seedlings (2005) J Plant Physiol, 162, pp. 662-668
  • Liptay, A., Davidson, D., Coleoptile growth: variation in elongation patterns of individual coleoptiles (1971) Ann Bot, 35, pp. 91-1002
  • Maiale, S., Sanchez, D., Guirado, A., Vidal, A., Ruiz, O., Spermine accumulation under salt stress (2004) J Plant Physiol, 161, pp. 35-42
  • Mansour, M.M.F., Nitrogen containing compounds and adaptation of plants to salinity stress (2000) Biol Plant, 43, pp. 491-500
  • Marcé, M., Brown, D.S., Capell, T., Figueras, X., Tiburcio, A.F., Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues (1995) J Chromatogr B Biomed Appl, 666, pp. 329-335
  • Márquez, A.J., Betti, M., García-Calderón, M., Pal'ove-Balang, P., Díaz, P., Monza, J., Nitrate assimilation in Lotus japonicus (2005) J Exp Bot, 56, pp. 1741-1749
  • McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L., Swan, J.A., A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi (1990) New Phytol, 115, pp. 495-501
  • Pérez-Amador, M.A., Carbonell, J., Granell, A., Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum (L.) (1995) Plant Mol Biol, 28, pp. 997-1009
  • Phillips, J.M., Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection (1970) T Brit Mycol Soc, 55, pp. 158-161
  • Rabie, G.H., Almadini, A.M., Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress (2005) Afr J Biotechnol, 4, pp. 210-220
  • Radyukina, N.L., Mapelli, S., Ivanov, Y.V., Kartashov, A.V., Brambilla, I., Kuznetsov, V.V., Homeostasis of polyamines and antioxidant systems in roots and leaves of Plantago major under salt stress (2009) Russ J Plant Physl, 56, pp. 323-331
  • Rodríguez, A.A., Maiale, S.J., Menéndez, A.B., Ruiz, O.A., Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress (2009) J Exp Bot, 60, pp. 4249-4262
  • Sannazzaro, A., Ruiz, O., Albertó, E., Menéndez, A., Presence of different arbuscular mycorrhizal infection patterns in roots of Lotus glaber plants growing in the Salado River basin (2004) Mycorrhiza, 14, pp. 139-142
  • Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiol Bioch, 45, pp. 39-46
  • Sannazzaro, A., Bergottini, V., Paz, R., Castagno, L., Menéndez, A., Ruiz, O., Pieckenstain, F., Estrella, M., Comparative symbiotic performance of native rhizobia of the Flooding Pampa and strains currently used for inoculating Lotus tenuis; in this region (2011) Anton Leeuw Int J G, 99, pp. 371-379
  • Santa-Cruz, A., Acosta, M., Rus, A., Bolarin, M.C., Short-term salt tolerance mechanisms in differentially salt tolerant tomato species (1999) Plant Physiol Bioch, 37, pp. 65-71
  • Schmidt, G., Zotz, G., Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea anguinolenta (2001) Plant Cell Environ, 24, pp. 101-112
  • Schopfer, P., Plachy, C., Frahry, G., Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid (2001) Plant Physiol, 125, pp. 1591-1602
  • Shamseldin, A., Nyalwidhe, J., Werner, D., A proteomic approach towards the analysis of salt tolerance in Rhizobium etli and Sinorhizobium meliloti strains (2006) Curr Microbiol, 52, pp. 333-339
  • Shaul-Keinan, O., Gadkar, V., Ginzberg, I., Grünzweig, J.M., Chet, I., Elad, Y., Wininger, S., Kapulnik, Y., Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices (2002) New Phytol, 154, pp. 501-507
  • Smith, T.A., Polyamines (1985) Ann Rev Plant Physio, 36, pp. 117-143
  • Soliman, A., Shanan, N.T., Massoud, O.N., Swelim, D.M., Improving salinity tolerance of Acacia saligna (Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation (2012) Afr J Biotechnol, 11, pp. 1259-1266
  • Sotiropoulos, T.E., Therios, I.N., Tsirakoglou, V., Dimassi, K.N., Response of the quince genotypes BA 29 and EMA used as pear rootstocks to boron and salinity (2007) Int J Fruit Sci, 6, pp. 93-101
  • Stetsenko, L.A., Rakitin, V.Y., Shevyakova, N.I., Kuznetsov, V.V., Organ-specific changes in the content of free and conjugated polyamines in Mesembryanthemum crystallinum plants under salinity (2009) Russ J Plant Physl+, 56, pp. 808-813
  • Stewart, G.R., Larher, F., Accumulation of amino acids and related compounds in relation to environmental stress (1980) The Biochemistry of Plants, Vol 5, pp. 609-635. , B. J. Miflin (Ed.), New York: Academic Press
  • Su, G., Bai, X., Contribution of putrescine degradation to proline accumulation in soybean leaves under salinity (2008) Biol Plantarum, 52, pp. 796-799
  • Tal, M., Katz, A., Heikin, H., Dehan, K., Salt tolerande in the wild relatives of the cultivated tomato: porline accumulation in Lycopersicon esculentum Mill., L. peruvianum Mill. and Solanum pennelli Cor. treated with NaCI and polyethylene glycol (1979) New Phytol, 82, pp. 349-355
  • Theiss, C., Bohley, P., Voigt, J., Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii (2002) Plant Physiol, 128, pp. 1470-1479
  • Tonon, G., Kevers, C., Faivre-Rampant, O., Graziani, M., Gaspar, T., Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus (2004) J Plant Physiol, 161, pp. 701-708
  • Trotel, P., Bouchereau, A., Niogret, M.F., Larher, F., The fate of osmo-accumulated proline in leaf discs of rape (Brassica napus L.) incubated in a medium of low osmolarity (1996) Plant Sci, 118, pp. 31-45
  • Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., Thomas, G., Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.)-differential response in salt-tolerant and sensitive varieties (2003) Plant Sci, 165, pp. 1411-1418
  • Wang, K., Liu, Y., Dong, K., Dong, J., Kang, J., Yang, Q., Zhou, H., Sun, Y., The effect of NaCl on proline metabolism in Saussurea amara seedlings (2011) Afr J Biotechnol, 10, pp. 2886-2893
  • Zhang, J., Zhang, Y., Du, Y., Chen, S., Tang, H., Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress (2011) J Proteome Res, 10, pp. 1904-1914
  • Zhao, F.-G., Sun, C., Liu, Y.-L., Ornithine pathway in proline biosynthesis activated by salt stress in barley seedlings (2001) Acta Bot Sin, 43, pp. 36-40
  • Zotz, G., Photosynthetic capacity increases with plant size (1997) Bot Acta, 110, pp. 306-308
  • Zotz, G., Size dependence in the reproductive allocation of Dimerandra emarginata, an epiphytic orchid (2000) Ecotropica, 6, pp. 95-99
  • Zotz, G., Ziegler, H., Size-related differences in carbon isotope discrimination in the epiphytic orchid, Dimerandra emarginata (1999) Naturwissenschaften, 86, pp. 39-40
  • Zotz, G., Thomas, V., Hartung, W., Ecophysiological consequences of differences in plant size: abscisic acid relationships in the epiphytic orchid Dimerandra emarginata (2001) Oecologia, 129, pp. 179-185

Citas:

---------- APA ----------
Echeverria, M., Sannazzaro, A.I., Ruiz, O.A. & Menéndez, A.B. (2013) . Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity. Plant and Soil, 364(1-2), 69-79.
http://dx.doi.org/10.1007/s11104-012-1312-6
---------- CHICAGO ----------
Echeverria, M., Sannazzaro, A.I., Ruiz, O.A., Menéndez, A.B. "Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity" . Plant and Soil 364, no. 1-2 (2013) : 69-79.
http://dx.doi.org/10.1007/s11104-012-1312-6
---------- MLA ----------
Echeverria, M., Sannazzaro, A.I., Ruiz, O.A., Menéndez, A.B. "Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity" . Plant and Soil, vol. 364, no. 1-2, 2013, pp. 69-79.
http://dx.doi.org/10.1007/s11104-012-1312-6
---------- VANCOUVER ----------
Echeverria, M., Sannazzaro, A.I., Ruiz, O.A., Menéndez, A.B. Modulatory effects of Mesorhizobium tianshanense and Glomus intraradices on plant proline and polyamine levels during early plant response of Lotus tenuis to salinity. Plant Soil. 2013;364(1-2):69-79.
http://dx.doi.org/10.1007/s11104-012-1312-6