Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background and Aims: Chenopodium quinoa can grow at altitudes of 3,600-4,000 masl and is adapted to the highly arid conditions typical of the salty soils in the South American Altiplano, with less than 250 mm of annual rain and temperatures below 0°C. The aim of the study was to investigate the effect of salinity on the dehydrin content of mature embryos harvested from salt-stressed Chenopodium quinoa cv. Hualhuas plants grown at 100 to 500 mM NaCl. To date, no studies exist on the dehydrins of seeds from salt-stressed plants, although dehydrins in the root, stems and leaves have been reported as an adaptation to water deficit produced by salinity. Methods: Dehydrin-like protein detection was carried out with an antiserum raised against a highly-conserved lysine-rich 15-amino acid sequence known as the K-segment, which is capable of recognizing proteins immunologically related to the dehydrin family. Results: Dehydrins were analyzed in embryos by both western blot and in situ immunolocalization. Western blot analysis detected at least four dehydrins (55, 50, 34, and 30 kDa) in seeds harvested from quinoa salt-stressed plants treated under a wide range of salinities. The 30 kDa dehydrin increased its accumulation in both 300 and 500 mM NaCl growth conditions as revealed by densitometric analyses. Dehydrin subcellular localization was mostly nuclear at 500 mM of NaCl. A phosphatase treatment of protein extracts caused a mobility shift of the 34 and 30 kDa dehydrin bands suggesting a putative modulation mechanism based on protein phosphorylation. Conclusions: We propose that these novel observations regarding dehydrin accumulation, subcellular localization and phosphorylation state are related to the high salt stress tolerant phenotype previously reported on this cultivar. © 2011 Springer Science+Business Media B.V.

Registro:

Documento: Artículo
Título:High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos
Autor:Burrieza, H.P.; Koyro, H.-W.; Tosar, L.M.; Kobayashi, K.; Maldonado, S.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Univ., C1428EGA Ciudad de Buenos Aires, Argentina
Institute for Plant Ecology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Univ., C1428EGA Ciudad de Buenos Aires, Argentina
Palabras clave:Chenopodium quinoa; Dehydrin in situ immunolocalization; Dehydrin western blot; Embryo dehydrins; Salt stress; accumulation; altitude; amino acid; arid environment; cultivar; dicotyledon; drought stress; embryo; enzyme activity; immunoassay; low temperature; phenotype; protein; saline soil; salinity tolerance; seed; sodium chloride; Altiplano; Chenopodium quinoa
Año:2012
Volumen:354
Número:1-2
Página de inicio:69
Página de fin:79
DOI: http://dx.doi.org/10.1007/s11104-011-1045-y
Título revista:Plant and Soil
Título revista abreviado:Plant Soil
ISSN:0032079X
CODEN:PLSOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0032079X_v354_n1-2_p69_Burrieza

Referencias:

  • Allagulova, C.R., Gilamov, F.R., Shakirova, F.M., Vakhitov, V.A., The plant dehydrins: structure and functions (2003) Biochemistry (Moscow), 68, pp. 945-951
  • Alsheikh, M.K., Heyen, B.J., Randall, S.K., Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation (2003) J Biol Chem, 278, pp. 40882-40889
  • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., Covarrubias, A.A., The enigmatic LEA proteins and other hydrophylins (2008) Plant Physiol, 148, pp. 6-24. , doi:10.1128/EC.3.4.966-975
  • Bozzo, S., Retamal, C., Gel-perfect: geles unidimensionales. Un nuevo método densitométrico para computadores personales (1991) Arch. Biol Med. Exp, 24, p. 181
  • Brini, F., Hanin, M., Lumbreras, V., Amara, I., Khoudi, H., Hassairi, A., Page's, M., Masmoudi, K., Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana (2007) Plant Cell Rep, 26, pp. 2017-2026. , doi:10.1007/s00299-007-0412-x
  • Brini, F., Hanin, M., Lumbreras, V., Irar, S., Pages, Masmoudi, K., Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance (2007) Plant Sci, 172, pp. 20-28. , doi:10.1016/j.plantsci.2006.07.011
  • Carjuzáa, P., Castellión, M., Distéfano, A.J., del Vas, M., Maldonado, S., Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos (2008) Protoplasma, 233, pp. 149-156
  • Close, T.J., Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins (1996) Physiol Plant, 97, pp. 795-803
  • Close, T.J., Lammers, P.J., An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins (1993) Plant Physiol, 101, pp. 773-779
  • Close, T.J., Kortt, A.A., Chandler, P.M., A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn (1989) Plant Mol Biol, 13, pp. 95-108
  • Close, T.J., Fenton, R.D., Moonan, F., A view of plant dehydrins using antibodies specific to the carboxy terminal peptide (1993) Plant Mol Biol, 23, pp. 279-286
  • Epstein, E., (1972) Mineral Nutrition of Plants: Principles and Perspectives, , New York: Wiley
  • Gibeaut, D.M., Hulett, J., Cramer, G.R., Seemann, J.R., Maximal biomass of Arabidopsis thaliana using a simple, low maintenance hydroponic method and favorable environmental conditions (1997) Plant Physiol, 115, pp. 317-319
  • Goday, A., Jensen, A.B., Culianez-Macia, F.A., Alba, M.M., Figueras, M., Serratosa, J., Torrent, M., Pagés, M., The maize abscissic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals (1994) Plant Cell, 6, pp. 351-360
  • Godoy, J.A., Lunar, R., Torresschumann, S., Moreno, J., Rodrigo, R.M., Pintortoro, J.A., Expression, tissue distribution and subcellular-localization of dehydrin Tas14 in salt-stressed tomato plants (1994) Plant Mol Biol, 26, pp. 1921-1934
  • Han, B., Kermode, A.R., Dehydrin-like proteins in castor bean seeds and seedlings are differentially produced in response to ABA and water-deficit-related stresses (1996) J Exp Bot, 47, pp. 933-939
  • Harris, N., Spence, J., Oparka, J., General and enzyme histochemistry (1994) Plant Cell Biology a Practical Approach, pp. 51-68. , N. Harris and K. J. Oparka (Eds.), Oxford: Oxford University Press
  • Harris, K.F., Pesic-van Esbroeck, Z., Duffus, J.E., Moderate-temperature polymerization of LR White in a nitrogen atmosphere (1995) Microsc Res Tech, 32, pp. 264-265
  • Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., Sarhan, F., Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues (1995) Plant J, 8, pp. 583-593
  • Hundertmark, M., Hincha, D.K., LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana (2008) BMC Genomics, 9, pp. 118-139. , doi:10.1186/1471-2164-9-118
  • Irar, S., Oliveira, E., Pagès, M., Goday, A., Towards the identification of late embryogenic-abundant phosphoproteome in Arabidopsis by 2-DE and MS (2006) Proteomics, 6 (S1), pp. S175-S185
  • Jacobsen, S.-E., Quinoa's world potential (2007) Breeding of Neglected and under-Utilized Crops, Spices and Herbs, pp. 109-122. , S. Ochatt and S. M. Jain (Eds.), Enfield: Science Publishers
  • Jacobsen, S.E., Quispe, H., Mujica, A., Quinoa: An alternative crop for saline soils in the Andes (2001) Scientist and Farmer-Partners in Research for the 21st Century, pp. 403-408. , CIP Program Report 1999-2000
  • Jensen, A.B., Goday, A., Figueras, M., Jessop, A.C., Pages, M., Phosphorylation mediates the nuclear targeting of the maize RAB17 protein (1998) Plant J, 13, pp. 691-697
  • Koyro, H.-W., Study of potential cash crop halophytes in a quick check system (2003) Tasks Veg Sci, 38, pp. 5-17
  • Koyro, H.-W., Eisa, S.S., Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd (2008) Plant Soil, 302, pp. 79-90. , doi:10.1007/s11104-007-9457-4
  • Lisse, T., Bartels, D., Kalbitzer, H.R., Jaenicke, R., The recombinant dehydrin like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state (1996) Biol Chem, 377, pp. 555-561
  • Mundy, J., Chua, N.H., Abscisic acid and water-stress induce the expression of a novel rice gene (1988) Embo J, 7, pp. 2279-2286
  • Nylander, M., Svensson, J., Palva, E.T., Welin, B.V., Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana (2001) Plant Mol Biol, 45, pp. 263-279
  • Plana, M., Itarte, E., Eritja, R., Goday, A., Pages, M., Martinez, M.C., Phosphorylation of maize RAB-17 protein by casein kinase 2 (1991) J Biol Chem, 266, pp. 22510-22514
  • Retamal, C.A., Thiebaut, P., Alves, E.W., Protein purification from polyacrylamide gels by sonication extraction (1999) Anal Biochem, 268, pp. 15-20
  • Riera, M., Figueras, M., López, C., Goday, A., Pagès, M., Protein kinase CK2 modulates developmental functions of the abscisic acid responsive protein Rab17 from maize (2004) Proc Natl Acad Sci USA, 101, pp. 9879-9884
  • Rinne, P.L.H., Kaikuranta, P.L.M., van der Plas, L.H.W., van der Schoot, C., Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration (1999) Planta, 209, pp. 377-388
  • Rorat, T., Plant dehydrins tissue location, structure and function (2006) Cell Mol Biol Lett, 11, pp. 536-556. , doi:10.2478/s11658-006-0044-0
  • Rorat, T., Grygorowicz, W.J., Irzykowski, W., Rey, P., Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage under vegetative growth (2004) Planta, 218, pp. 878-885
  • Rorat, T., Szabala, B.M., Grygorowicz, W.J., Wojtowicz, B., Yin, Z., Rey, P., Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species (2006) Planta, 224, pp. 205-221
  • Saavedra, L., Svensson, J., Carballo, V., Izmendi, D., Welin, B., Vidal, S., A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance (2006) Plant J, 45, pp. 237-249
  • Spence, J., Plant histology (2001) Plant Cell Biology, pp. 189-206. , 2nd edn., C. Hawes and B. Satiat-Jeunemaitre (Eds.), Oxford: Oxford University Press
  • Still, D.W., Kovach, D.A., Bradford, K.J., Development of desiccation tolerance during embryogenesis in Rice (Oryza sativa) and Wild Rice (Zizania palustris) (Dehydrin Expression, Abscisic Acid Content, and Sucrose Accumulation) (1994) Plant Physiol, 104 (2), pp. 431-438
  • Tapia, M.E., Zonificación agroecológica del cultivo de la quinoa (Chenopodium quinoa Will d.) Primer taller internacional sobre quinua: Recursos genéticos y sistemas di produccion (1999) Regional Office for Latin America and the Caribbean, Food and Agriculture Organization of the United Nations, Santiago, Chile, , http://www.rlc.fao.org/prior/segalim/prodalim/prodveg/cdrom/contenido/libro14/cap1.2.htm, Lima, Perú. Accessed 14 May 2010
  • Wilson, C., Read, J.J., Abo-Kassem, E., Effect of mixed-salt salinity on growth and ion relations of a quinoa and a wheat variety (2002) J Plant Nutr, 25, pp. 2689-2704

Citas:

---------- APA ----------
Burrieza, H.P., Koyro, H.-W., Tosar, L.M., Kobayashi, K. & Maldonado, S. (2012) . High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant and Soil, 354(1-2), 69-79.
http://dx.doi.org/10.1007/s11104-011-1045-y
---------- CHICAGO ----------
Burrieza, H.P., Koyro, H.-W., Tosar, L.M., Kobayashi, K., Maldonado, S. "High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos" . Plant and Soil 354, no. 1-2 (2012) : 69-79.
http://dx.doi.org/10.1007/s11104-011-1045-y
---------- MLA ----------
Burrieza, H.P., Koyro, H.-W., Tosar, L.M., Kobayashi, K., Maldonado, S. "High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos" . Plant and Soil, vol. 354, no. 1-2, 2012, pp. 69-79.
http://dx.doi.org/10.1007/s11104-011-1045-y
---------- VANCOUVER ----------
Burrieza, H.P., Koyro, H.-W., Tosar, L.M., Kobayashi, K., Maldonado, S. High salinity induces dehydrin accumulation in Chenopodium quinoa Willd. cv. Hualhuas embryos. Plant Soil. 2012;354(1-2):69-79.
http://dx.doi.org/10.1007/s11104-011-1045-y