Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Two highly similar plastidic NADP-malic enzymes (NADP-MEs) are found in the C 4 species maize (Zea mays); one exclusively expressed in the bundle sheath cells (BSCs) and involved in C 4 photosynthesis (ZmC 4-NADP-ME); and the other (ZmnonC 4-NADP-ME) with housekeeping roles. In the present work, these two NADP-MEs were analyzed regarding their redox-dependent activity modulation. The results clearly show that ZmC 4-NADP-ME is the only one modulated by redox status, and that its oxidation produces a conformational change limiting the catalytic process, although inducing higher affinity binding of the substrates. The reversal of ZmC 4-NADP-ME oxidation by chemical reductants suggests the presence of thiol groups able to form disulfide bonds. In order to identify the cysteine residues involved in the activity modulation, site-directed mutagenesis and MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) analysis of ZmC 4-NADP-ME were performed. The results obtained allowed the identification of Cys192, Cys246 (not conserved in ZmnonC 4-NADP-ME), Cys270 and Cys410 as directly or indirectly implicated in ZmC 4-NADP-ME redox modulation. These residues may be involved in forming disulfide bridge(s) or in the modulation of the oxidation of critical residues. Overall, the results indicate that, besides having acquired a high level of expression and localization in BSCs, ZmC 4-NADP-ME displays a particular redox modulation, which may be required to accomplish the C 4 photosynthetic metabolism. Therefore, the present work could provide new insights into the regulatory mechanisms potentially involved in the recruitment of genes for the C 4 pathway during evolution. © 2012 The Author.

Registro:

Documento: Artículo
Título:Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-Malic enzyme activity
Autor:Alvarez, C.E.; Detarsio, E.; Moreno, S.; Andreo, C.S.; Drincovich, M.F.
Filiación:Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Universidad Nacional de Rosario, Suipacha 531, Rosario, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, 1428 Buenos Aires, Argentina
Palabras clave:C 4 photosynthesis; Maize; NADP-malic enzyme; Redox modulation; Structure-function relationship; chloroplast protein; cysteine; malate dehydrogenase; malate dehydrogenase (oxaloacetate decarboxylating) (NADP+); malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+); recombinant protein; vegetable protein; amino acid sequence; article; chloroplast; enzyme activation; enzyme specificity; enzymology; Escherichia coli; genetics; maize; mass spectrometry; metabolism; methodology; molecular genetics; mutation; oxidation reduction reaction; photosynthesis; sequence alignment; site directed mutagenesis; structure activity relation; Amino Acid Sequence; Chloroplast Proteins; Chloroplasts; Cysteine; Enzyme Activation; Escherichia coli; Malate Dehydrogenase; Molecular Sequence Data; Mutagenesis, Site-Directed; Mutation; Oxidation-Reduction; Photosynthesis; Plant Proteins; Recombinant Proteins; Sequence Alignment; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Structure-Activity Relationship; Substrate Specificity; Zea mays
Año:2012
Volumen:53
Número:6
Página de inicio:1144
Página de fin:1153
DOI: http://dx.doi.org/10.1093/pcp/pcs059
Título revista:Plant and Cell Physiology
Título revista abreviado:Plant Cell Physiol.
ISSN:00320781
CODEN:PCPHA
CAS:cysteine, 4371-52-2, 52-89-1, 52-90-4; malate dehydrogenase, 9001-64-3; Chloroplast Proteins; Cysteine, 52-90-4; Malate Dehydrogenase, 1.1.1.37; Plant Proteins; Recombinant Proteins; malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), 1.1.1.40
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00320781_v53_n6_p1144_Alvarez

Referencias:

  • Bailey, K.J., Gray, J.E., Walker, R.P., Leegood, R.C., Coordinate regulation of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase by light and CO 2 during C 4 photosynthesis (2007) Plant Physiology, 144 (1), pp. 479-486. , http://www.plantphysiol.org/cgi/reprint/144/1/479.pdf, DOI 10.1104/pp.106.093013
  • Bartsch, O., Mikkat, S., Hagemann, M., Bauwe, H., An autoinhibitory domain confers redox regulation to maize glycerate kinase (2010) Plant Physiol., 153, pp. 832-840
  • Buchanan, B.B., Balmer, Y., Redox regulation: A broadening horizon (2005) Annual Review of Plant Biology, 56, pp. 187-220. , DOI 10.1146/annurev.arplant.56.032604.144246
  • Detarsio, E., Andreo, C.S., Drincovich, M.F., Basic residues play key roles in catalysis and NADP +- specificity in maize (Zea mays L.) photosynthetic NADP +-dependent malic enzyme (2004) Biochemical Journal, 382 (3), pp. 1025-1030. , DOI 10.1042/BJ20040594
  • Detarsio, E., Alvarez, C.E., Saigo, M., Andreo, C.S., Drincovich, M.F., Identification of domains involved in tetramerization and malate inhibition of maize C 4-NADP-malic enzyme (2007) Journal of Biological Chemistry, 282 (9), pp. 6053-6060. , http://www.jbc.org/cgi/reprint/282/9/6053, DOI 10.1074/jbc.M609436200
  • Detarsio, E., Wheeler, M.C.G., Bermudez, V.A.C., Andreo, C.S., Drincovich, M.F., Maize C 4 NADP-malic enzyme: Expression in Escherichia coli and characterization of site-directed mutants at the putative nucleotide-binding sites (2003) Journal of Biological Chemistry, 278 (16), pp. 13757-13764. , DOI 10.1074/jbc.M212530200
  • Detarsio, E., Maurino, V.G., Alvarez, C., Muller, G., Andreo, C.S., Drincovich, M.F., Maize cytosolic NADP-malic enzyme (ZmCytNADP-ME): A phylogenetically distant isoform specifically expressed in embryo and emerging root (2008) Plant Mol. Biol., 68, pp. 355-367
  • Drincovich, M.F., Andreo, C.S., A study on the inactivation of maize leaves NADP-malic enzyme by 3-bromopyruvate (1992) Phytochemistry, 31, pp. 1883-1888
  • Drincovich, M.F., Andreo, C.S., Redox regulation of maize NADP-malic enzyme by thiol-disulfide interchange: Effect of reduced thioredoxin on activity (1994) Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1206 (1), pp. 10-16. , DOI 10.1016/0167-4838(94)90066-3
  • Drincovich, M.F., Casati, P., Andreo, C.S., NADP-malic enzyme from plants: A ubiquitous enzyme involved in different metabolic pathways (2001) FEBS Letters, 490 (1-2), pp. 1-6. , DOI 10.1016/S0014-5793(00)02331-0, PII S0014579300023310
  • Drincovich, M.F., Lara, M.V., Andreo, C.S., Maurino, V.G., C4 decarboxylases: Different solutions for the same biochemical problem, the provision of CO 2 to RubisCO in the bundle sheath cells (2011) C4 Photosynthesis and Related CO 2 Concentrating Mechanism, pp. 277-300. , Edited by Raghavendra, A.S. and Sage, R.F. Springer Science, Dordrecht, The Netherlands
  • Drincovich, M.F., Spampinato, C.P., Andreo, C.S., Evidence for the existence of two essential and proximal cysteinyl residues in NADP-malic enzyme from maize leaves (1992) Plant Physiol., 100, pp. 2035-2040
  • Edwards, G.E., Andreo, C.S., NADP malic enzyme from plants (1992) Phytochemistry, 31, pp. 1845-1857
  • Goyer, A., Decottignies, P., Issakidis-Bourguet, E., Miginiac-Maslow, M., Sites of interaction of thioredoxin with sorghum NADP-malate dehydrogenase (2001) FEBS Letters, 505 (3), pp. 405-408. , DOI 10.1016/S0014-5793(01)02860-5, PII S0014579301028605
  • Hibberd, J.M., Sheehy, J.E., Langdale, J.A., Using C4 photosynthesis to increase the yield of rice-rationale and feasibility (2008) Curr. Opin. Plant Biol., 11, pp. 228-231
  • Hibberd, J.M., Covshoff, S., The regulation of gene expression required for C4 photosynthesis (2010) Annu. Rev. Plant Biol., 61, pp. 181-207
  • Kanai, R., Edwards, G., The biochemistry of C4 photosynthesis (1999) C4 Plant Biology, pp. 411-444. , Edited by Sage, R.F. and Monson, R.K. Academic Press, San Diego
  • Kosower, N.S., Kosower, E.M., Formation of disulfides with diamide (1987) Methods Enzymol., 143, pp. 264-270
  • Ku, M.S.B., Kano-Murakami, Y., Matsuoka, M., Evolution and expression of C4 photosynthesis genes (1996) Plant Physiol., 111, pp. 1251-1261
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Majeran, W., Cai, Y., Sun, Q., Van Wijk, K.J., Functional differentiation of bundle sheath and mesophyll maize chloroplast determined by comparative proteomics (2005) Plant Cell, 17, pp. 3111-3140
  • Majeran, W., Van Wijk, K.J., Cell-type-specific differentiation of chloroplast in C4 plants (2009) Trends Plant Sci., 14, pp. 100-109
  • Maurino, V.G., Drincovich, M.F., Casati, P., Andreo, C.S., Edwards, G.E., Ku, M.S.B., Gupta, S.K., Franceschi, V.R., NADP-malic enzyme: Immunolocalization in different tissues of the C 4 plant maize and the C 3 plant wheat (1997) Journal of Experimental Botany, 48 (308), pp. 799-811
  • Maurino, V.G., Saigo, M., Andreo, C.S., Drincovich, M.F., Non-photosynthetic 'malic enzyme' from maize: A constituvely expressed enzyme that responds to plant defence inducers (2001) Plant Molecular Biology, 45 (4), pp. 409-420. , DOI 10.1023/A:1010665910095
  • Mikaelian, I., Sergeant, A., A general and fast method to generate multiple site directed mutagenesis (1992) Nucleic Acids Res., 20, p. 376
  • Murmu, J., Chinthapalli, B., Raghavendra, A.S., Light activation of NADP malic enzyme in leaves of maize: Marginal increase in activity, but marked change in regulatory properties of enzyme (2003) Journal of Plant Physiology, 160 (1), pp. 51-56. , DOI 10.1078/0176-1617-00844
  • Rothermel, B.A., Nelson, T., Primary structure of the maize NADP-dependent malic enzyme (1989) Journal of Biological Chemistry, 264 (33), pp. 19587-19592
  • Saigo, M., Bologna, F., Maurino, V.G., Detarsio, E., Andreo, C.S., Drincovich, M.F., Maize recombinant non-C4 NADP-malic enzyme: A novel dimeric enzyme with high specific activity (2004) Plant Mol. Biol., 55, pp. 97-107
  • Tausta, S.L., Coyle, H.M., Rothermel, B., Stiefel, V., Nelson, T., Maize C4 and non-C4-dependent malic enzymes are encoded by distinct genes derived from a plastid-localized ancestor (2002) Plant Mol. Biol., 50, pp. 635-652

Citas:

---------- APA ----------
Alvarez, C.E., Detarsio, E., Moreno, S., Andreo, C.S. & Drincovich, M.F. (2012) . Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-Malic enzyme activity. Plant and Cell Physiology, 53(6), 1144-1153.
http://dx.doi.org/10.1093/pcp/pcs059
---------- CHICAGO ----------
Alvarez, C.E., Detarsio, E., Moreno, S., Andreo, C.S., Drincovich, M.F. "Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-Malic enzyme activity" . Plant and Cell Physiology 53, no. 6 (2012) : 1144-1153.
http://dx.doi.org/10.1093/pcp/pcs059
---------- MLA ----------
Alvarez, C.E., Detarsio, E., Moreno, S., Andreo, C.S., Drincovich, M.F. "Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-Malic enzyme activity" . Plant and Cell Physiology, vol. 53, no. 6, 2012, pp. 1144-1153.
http://dx.doi.org/10.1093/pcp/pcs059
---------- VANCOUVER ----------
Alvarez, C.E., Detarsio, E., Moreno, S., Andreo, C.S., Drincovich, M.F. Functional characterization of residues involved in redox modulation of maize photosynthetic NADP-Malic enzyme activity. Plant Cell Physiol. 2012;53(6):1144-1153.
http://dx.doi.org/10.1093/pcp/pcs059