La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Fructans are fructose polymers synthesized from sucrose in the plant vacuole. They represent short- and long-term carbohydrate reserves and have been associated with abiotic stress tolerance in graminean species. We report the isolation and characterization of a putative sucrose: fructan 6-fructosyltransferase (6-SFT) gene from a Patagonian grass species, Bromus pictus, tolerant to drought and cold temperatures. Structural and functional analyses of this gene were performed by Southern and Northern blot. Sugar content, quality and fructosyltransferase activity were studied using HPAEC-PAD (high-pH anion-exchange chromatography with pulsed amperometric detection),enzymatic and colorimetric assays. The putative 6-SFT gene had all the conserved motifs of fructosyl-transferase and showed 90% identity at the amino acid level with other 6-SFTs from winter cereals. Expression studies, and determination of sugar content and fructosyl-transferase activity were performed on fi ve sections of the leaf. Bp6- SFT wa s expressed predominantly in leaf bases, where fructosyltransferase activity and fructan content are higher. Bp6-SFT expression and accumulation of fructans showed different patterns in the evaluated leaf sections during a 7 d time course experiment under chilling treatment. The transcriptional pattern suggests that the B. pictus 6-SFT gene is highly expressed in basal leaf sections even under control temperate conditions, in contrast to previous reports in other graminean species. Low temperatures caused an increase in Bp6-SFT expression and fructan accumulation in leaf bases. This is the fi rst study of the isolation and molecular characterization of a fructosyltransferase in a native species from the Patagonian region. Expression in heterologous systems will confi rm the functionality, allowing future developments in generation of functional markers for assisted breeding or biotechnological applications.


Documento: Artículo
Título:Molecular characterization of a putative sucrose:Fructan 6-fructosyltransferase (6-SFT) of the cold-resistant patagonian grass bromus pictus associated with fructan accumulation under low temperatures
Autor:Del Viso, F.; Puebla, A.F.; Fusari, C.M.; Casabuono, A.C.; Couto, A.S.; Pontis, H.G.; Hopp, H.E.; Heinz, R.A.
Filiación:Instituto de Biotecnologa, CICVyA, Instituto Nacional de Tecnologa Agropecuaria (INTA, Castelar), (1686), Hurlingham, Buenos Aires, United Arab Emirates
Centro de Investigaciones Biológicas, Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103 (7600), Mar del Plata, United Arab Emirates
Departamento de Qumica Orgnica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, (1428), C.A. Buenos Aires, United Arab Emirates
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, United Arab Emirates
Idioma: Inglés
Palabras clave:6-SFT; Abiotic stress; Bromus pictus; Fructan; Low temperatures; Patagonia; Bromus; Bromus pictus; Graminea; complementary DNA; fructan; glycosyltransferase; plant RNA; sucrose - fructan 6-fructosyltransferase; sucrose fructan 6 fructosyltransferase; vegetable protein; amino acid sequence; article; biosynthesis; Bromus; cold; DNA sequence; enzymology; gene expression regulation; genetics; metabolism; molecular cloning; molecular genetics; plant gene; sequence alignment; Amino Acid Sequence; Bromus; Cloning, Molecular; Cold Temperature; DNA, Complementary; Fructans; Gene Expression Regulation, Plant; Genes, Plant; Hexosyltransferases; Molecular Sequence Data; Plant Proteins; RNA, Plant; Sequence Alignment; Sequence Analysis, DNA
Número de artículo:pcp008
Página de inicio:489
Página de fin:503
Título revista:Plant and Cell Physiology
Título revista abreviado:Plant Cell Physiol.
CAS:fructan, 9037-90-5; glycosyltransferase, 9033-07-2; DNA, Complementary; Fructans; Hexosyltransferases, EC 2.4.1.-; Plant Proteins; RNA, Plant; sucrose - fructan 6-fructosyltransferase, EC 2.4.1.-


  • Altenbach, D., Nuesch, E., Ritsema, T., Boller, T., Wiemken, A., Mutational analysis of the active center of plant fructosyltransferases: Festuca 1-SST and barley 6-SFT (2005) FEBS Lett, 579, pp. 4647-4653
  • Bancal, P., Carpita, N.C., Gaudillere, J.P., Differences in fructan accumulated in induced and fi eld-grown wheat plants: An elongation trimming pathway for their synthesis (1992) New Phytol, 120, pp. 313-321
  • Bendtsen, J.D., Nielsen, H., von Heijne, G., Brunak, S., Improved prediction of signal peptides: SignalP 3.0 (2004) J. Mol. Biol, 340, pp. 783-795
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal. Biochem, 72, pp. 248-254
  • Cairns, A.J., Turner, L.B., Gallagher, J.A., Ryegrass leaf fructan synthesis is oxygen dependent and abolished by endomembrane inhibitors (2008) N ew Phytol, 180, pp. 832-840
  • Chalmers, J., Johnson, X., Lidgett, A., Spangenberg, G., Isolation and characterisation of a sucrose:sucrose 1-fructosyltransferase gene from perennial ryegrass (L olium perenne) (2003) J. Plant Physiol, 160, pp. 1385-1391
  • Chalmers, J., Lidgett, A., Cummings, N., Cao, Y., Forster, J., Spangenberg, G., Molecular genetics of fructan metabolism in perennial ryegrass (2005) P lant Biotech. J, 3, pp. 459-474
  • De Roover, J., Vandenbranden, Van Laere, A. and Van den Ende, W. (2000) Drought induces fructan synthesis and 1-SST (sucrose:sucrose fructosyltransferase) in roots and leaves of chicory seedlings (C ichorium intybus L.). P lanta 210: 808-814Felsenstein, J, 2005 PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, SeattleFrancki, M.G., Walker, E., Forster, J.W., Spangenberg, G., Appels, R., Fructosyltransferase and invertase genes evolved by gene duplication and rearrangements: Rice, perennial ryegrass, and wheat gene families (2006) G enome, 49, pp. 1081-1091
  • Gallagher, J.A., Cairns, A.J., Pollock, C.J., Cloning and characterization of a putative fructosyltransferase and two putative invertase genes from the temperate grass L olium temulentum L (2004) J. Exp. Bot, 55, pp. 557-569
  • Hendry, G.A.F., Evolutionary origins and natural functions of fructans-a climatological, biogeographic and mechanistic appraisal (1993) New Phytol, 123, pp. 3-14
  • Hendry, G.A.F., Wallace, R.K., The origin, distribution, and evolutionary signifi cance of fructans (1993) Science and Technology of Fructans, pp. 119-139. , Edited by Suzuki, M.C. Chatterton, N.J. pp, CRC Press, Boca RatonFL
  • Hincha, D.K., Zuther, E., Hellwege, E.M., Heyer, A.G., Specifi c effects of fructo- and gluco-oligosaccharides in the preservation of liposomes during drying (2002) Glycobiology, 12, pp. 103-110
  • Hisano, H., Kanazawa, A., Kawakami, A., Yoshida, M., Shimamoto, Y., Yamada, T., Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing (2004) Plant Sci, 167, pp. 861-868
  • Hisano, H., Kanazawa, A., Yoshida, M., Humphreys, M.O., Iizuka, M., Kitamura, K., Coordinated expression of functionally diverse fructosyltransferase genes is associated with fructan accumulation in response to low temperature in perennial ryegrass (2008) New Phytol, 178, pp. 766-780
  • Housley, T.L., Pollock, C., Photosynthesis and carbohydrate metabolism in detached leaves of L olium temulentum L (1985) N ew Phytol, 99, pp. 499-507
  • Ji, X., Van den Ende, W., Schroeven, L., Clerens, S., Geuten, K., Cheng, S., The rice genome encodes two vacuolar invertases with fructan exohydrolase activity but lacks the related fructan biosynthesis genes of the Pooideae (2007) New Phytol, 173, pp. 50-62
  • Johnson, X., Lidgett, A., Chalmers, J., Guthridge, K., Jones, E., Cummings, N., Isolation and characterisation of an invertase cDNA from perennial ryegrass (Lolium perenne) (2003) J. Plant Physiol, 160, pp. 903-911
  • Katoh, K., Kuma, K., Toh, H., Miyata, T., MAFFT version 5: Improvement in accuracy of multiple sequence alignment (2005) Nucleic Acids Res, 33, pp. 511-518
  • Kawakami, A., Sato, Y., Yoshida, M., Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance (2008) J. Exp. Bot, 59, pp. 793-802
  • Kawakami, A., Yoshida, M., Molecular characterization of sucrose:sucrose 1-fructosyltransferase and sucrose:fructan 6- fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening (2002) Biosci. Biotechnol. Biochem, 66, pp. 2297-2305
  • Konstantinova, T., Parvanova, D., Atanassov, A., Djilianov, D., Freezing tolerant tobacco transformed to accumulate osmoprotectants (2002) P lant Sci, 163, pp. 157-164
  • Lasseur, B., Lothier, J., Djoumad, A., De Coninck, B., Smeekens, S., Van Laere, A., Molecular and functional characterization of a cDNA encoding fructan:fructan 6G-fructosyltransferase (6G-FFT)/ fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (L olium perenne L.) (2006) J. Exp. Bot, 57, p. 3961
  • Lasseur, B., Schroeven, L., Lammens, W., Le Roy, K., Spangenberg, G., Manduzio, H., Transforming a fructan:fructan 6G- fructosyltransferase from perennial ryegrass (Lolium perenne) into a sucrose:sucrose 1-fructosyltransferase (2009) Plant Physiol, 149, pp. 327-339
  • Li, H.J., Yang, A.F., Zhang, X.C., Gao, F., Zhang, J.R., Improving freezing tolerance of transgenic tobacco expressing sucrose:sucrose 1-fructosyltransferase gene from Lactuca sativa (2007) Plant Cell Tissue Organ Cult, 89, pp. 37-48
  • Li, Y., Su, X., Zhang, B., Zhang, Z., Molecular detection and drought resistance analysis of SacB-transgenic poplars (Populus alba ×P. glandulosa). F ront (2008) Forest China, 3, pp. 226-231
  • Livingston, D.P.I., Chatterton, N.J., Harrison, P.A., Structure and quantity of fructan oligomers in oat (A vena spp.) (1993) N ew Phytol, 123, pp. 725-734
  • Lothier, J., Lasseur, B., Le Roy, K., Van Laere, A., Prud'homme, M.P., B arre, P., et al. (2007) Cloning, gene mapping, and functional analysis of a fructan 1-exohydrolase (1-FEH) from Lolium perenne implicated in fructan synthesis rather than in fructan mobilization. J. Exp. Bot. 58: 1969-1983Luscher, M., Hochstrasser, U., Vogel, G., Aeschbacher, R., Galati, V., Nelson, C.J., Cloning and functional analysis of sucrose:sucrose 1-fructosyltransferase from tall fescue (2000) Plant Physiol, 124, pp. 1217-1228
  • Luscher, M. and Nelson, C.J. (1995) Fructosyltransferase activities in the leaf growth zone of tall fescue. Plant Physiol. 107: 1419-1425. Maleux, K. and Van den Ende, W. (2007) Levans in excised leaves of Dactylis glomerata: effects of temperature, light, sugars and senescence. J. Plant Biol. 50: 671-680Martinez-Fleites, C., Ortiz-Lombardia, M., Pons, T., Tarbouriech, N., Taylor, E.J., Arrieta, J.G., Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus (2005) B iochem J, 390, pp. 19-27
  • Morvan-Bertrand, A., Boucaud, J., Le Saos, J., Prud'homme, M.P., Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L (2001) P lanta, 213, pp. 109-120
  • Nagaraj, V., Altenbach, D., Galati, V., Luscher, M., Meyer, A.D., Boller, T., Distinct regulation of sucrose:sucrose-1 fructosyltransferase (1-SST) and sucrose:fructan 6-fructosyltransferase (6-SFT), the key enzymes of fructan synthesis in barley leaves: 1-SST as the pacemaker (2004) New Phytol, 161, pp. 735-748
  • Naranjo, C.A., Arias, F.H., Gil, F.E., Soriano, A., B romus pictus of the B. setifolius complex (section Pnigma): Numerical taxonomy and chromosome evidence for species rank (1990) Can. J. Bot, 68, pp. 2493-2500
  • Percheron, F., Colorimetric determination of fructose and fructofuranosides by the thiobarbituric acid reaction (1962) C. R. Acad Sci., Paris, 255, pp. 2521-2522
  • Pilon-Smits, E., Ebskamp, M., Paul, M.J., Jeuken, M., Weisbeek, P.J., Smeekens, S., Improved performance of transgenic fructanaccumulating tobacco under drought stress (1995) Plant Physiol, 107, pp. 125-130
  • Pontis, H.G., The role of sucrose and fructosylsucrose in fructan metabolism. P hysiol (1970) Plant, 23, pp. 1084-1100
  • Pontis, H.G., Fructan and cold stress (1988) J. Plant Physiol, 134, pp. 148-150
  • Puebla, A.F., (1999) Estudios bioquímicos y moleculares del metabolismo de fructanos en Gramíneas nativas en relación con estreses ambientales, , Buenos Aires University, Argentina
  • Puebla, A.F., Battaglia, M.E., Salerno, G.L., Pontis, H.G., Sucrose-sucrose fructosyl transferase activity: A direct and rapid colorimetric procedure for the assay in plant extracts (1999) Plant Physiol. Biochem, 37, pp. 699-702
  • Puebla, A.F., Salerno, G.L., Pontis, H., Fructan metabolism in two species of Bromus subjected to chilling and water stress (1997) New Phytol, 136, pp. 123-129
  • Ritsema, T., Hernandez, L., Verhaar, A., Altenbach, D., Boller, T., Wiemken, A., Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box (2006) Plant J, 48, pp. 228-237
  • Ritsema, T., Verhaar, A., Vijn, I., Smeekens, S., Using natural variation to investigate the function of individual amino acids in the sucrose-binding box of fructan:fructan 6G-fructosyltransferase (6G-FFT) in product formation (2005) Plant Mol. Biol, 58, pp. 597-607
  • Roberfroid, M.B., Inulin-type fructans: Functional food ingredients (2007) J. Nutr, 137, pp. 2493S-2502S
  • Roth, A., Luscher, M., Sprenger, N., Boller, T., Wiemken, A., Fructan and fructan-metabolizing enzymes in the growth zone of barley leaves (1997) N ew Phytol, 163, pp. 73-79
  • Santoiani, C.S., Tognetti, J.A., Pontis, H.G., Salerno, G.L., Sucrose and fructan metabolism in wheat roots at chilling temperatures. P hysiol (1993) Plant, 87, pp. 84-88
  • Smith, K., Simpson, R.J., Oram, R.N., Lowe, K.F., Kelly, K.B., Evans, P.M., Seasonal variation in the herbage yield and nutritive value of perennial ryegrass cultivars with high or normal herbage water soluble carbohydrate concentrations grown in three contrasting Australian dairy environments (1998) Aust. J. Exp. Agric, 38, pp. 821-830
  • Spackman, V.M.T., Cobb, A.H., An enzyme-based method for the rapid determination of sucrose, glucose and fructose in sugar beet roots and the effects of impact damage and postharvest storage in clamps (2001) J. Sci. Food Agric, 82, pp. 80-86
  • Sprenger, N., Bortlik, K., Brandt, A., Boller, T., Wiemken, A., Purifi cation, cloning, and functional expression of sucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley (1995) Proc. Natl Acad. Sci. USA, 92, pp. 11652-11656
  • Sturm, A., Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning (1999) Plant Physiol, 121, pp. 1-8
  • Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specifi c gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680
  • Tognetti, J.A., Salerno, G.L., Crespi, M.D., Pontis, H.G., Sucrose and fructan metabolism of different wheat cultivars at chilling temperatures. P hysiol (1990) Plant, 78, pp. 554-559
  • Valluru, R., Van den Ende, W., Plant fructans in stress environments: Emerging concepts and future prospects (2008) J. Exp. Bot, 59, pp. 2905-2916
  • Van den Ende, W., Van Laere, A., Fructans in dicotyledonous plants: Occurrence and metabolism (2007) Recent Advances in Fructooligosaccharides Research, pp. 1-14. , Edited by Shiomi, N, Benkeblia, N. and Onodera, S. pp, Research Signpost, Kerala, India
  • van Hijum, S.A., van der Maarel, M.J., Dijkhuizen, L., Kinetic properties of an inulosucrase from Lactobacillus reuteri 121 (2003) FEBS Lett, 534, pp. 207-210
  • Vereyken, I.J., Chupin, V., Islamov, A., Kuklin, A., Hincha, D.K., de Kruijff, B., The effect of fructan on the phospholipid organization in the dry state (2003) Biophys. J, 85, pp. 3058-3065
  • Wagner, W., Keller, F., Wiemken, A., Fructan metabolism in cereals: Induction in leaves and compartmentation in protoplasts and vacuoles (1983) Z. Pfl anzenphysiol, 112, pp. 359-372
  • Wang, N., Nobel, P.S., Phloem transport of fructans in the crassulacean acid metabolism species A gave deserti (1998) P lant Physiol, 116, pp. 709-714
  • Wei, J.Z., Chatterton, N.J., Fructan biosynthesis and fructosyltranferase evolution: The expression of the 6-SFT (sucrose:fructan 6-fructosyltransferase) gene in crested wheatgrass (A gropyrum cristatum) (2001) J. Plant Physiol, 158, pp. 1203-1213
  • Wei, J.Z., Chatterton, N.J., Harrison, P.A., Wang, R.R.C., Larson, S.R., Characterization of fructan biosynthesis in big bluegrass (Poa secunda) (2002) J. Plant Physiol, 159, pp. 705-715
  • Yoshida, M., Abe, J., Moriyama, M., Kuwabara, T., Carbohydrate levels among winter wheat cultivars varying in freezing tolerance and snow mold resistance during autumn and winter. P hysiol (1998) Plant, 103, pp. 8-16
  • Yoshida, M., Kawakami, A., Van den Ende, W., Graminan metabolism in cereals: Wheat as a model system (2007) Recent Advances in Fructooligosaccharides Research, pp. 201-212. , Edited by Shiomi, N, Benkeblia, N. and Onodera, S. pp, Research Signpost, Kerala, India


---------- APA ----------
Del Viso, F., Puebla, A.F., Fusari, C.M., Casabuono, A.C., Couto, A.S., Pontis, H.G., Hopp, H.E.,..., Heinz, R.A. (2009) . Molecular characterization of a putative sucrose:Fructan 6-fructosyltransferase (6-SFT) of the cold-resistant patagonian grass bromus pictus associated with fructan accumulation under low temperatures. Plant and Cell Physiology, 50(3), 489-503.
---------- CHICAGO ----------
Del Viso, F., Puebla, A.F., Fusari, C.M., Casabuono, A.C., Couto, A.S., Pontis, H.G., et al. "Molecular characterization of a putative sucrose:Fructan 6-fructosyltransferase (6-SFT) of the cold-resistant patagonian grass bromus pictus associated with fructan accumulation under low temperatures" . Plant and Cell Physiology 50, no. 3 (2009) : 489-503.
---------- MLA ----------
Del Viso, F., Puebla, A.F., Fusari, C.M., Casabuono, A.C., Couto, A.S., Pontis, H.G., et al. "Molecular characterization of a putative sucrose:Fructan 6-fructosyltransferase (6-SFT) of the cold-resistant patagonian grass bromus pictus associated with fructan accumulation under low temperatures" . Plant and Cell Physiology, vol. 50, no. 3, 2009, pp. 489-503.
---------- VANCOUVER ----------
Del Viso, F., Puebla, A.F., Fusari, C.M., Casabuono, A.C., Couto, A.S., Pontis, H.G., et al. Molecular characterization of a putative sucrose:Fructan 6-fructosyltransferase (6-SFT) of the cold-resistant patagonian grass bromus pictus associated with fructan accumulation under low temperatures. Plant Cell Physiol. 2009;50(3):489-503.