Artículo

Gratton, F.T.; Gnavi, G.; Farrugia, C.J.; Bender, L. "The stability of the pristine magnetopause" (2003) Planetary and Space Science. 51(12):769-783
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A MHD theory of combined Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities for a transition layer with two different scale lengths (Δ and δ for the variation of velocity/magnetic fields and density, respectively) is presented. The study is motivated by reports of magnetopauses with no low latitude boundary layer, in which a sharp density drop over a distance δ≪Δ is observed ("pristine" magnetopauses (J. Geophys. Res. 101 (1996) 49). The theory ignores compressibility effects and applies to subsonic regions of the dayside magnetopause. The RT effect is included to account for temporary periods of acceleration of the magnetopause, caused by sudden changes of the solar wind dynamic pressure. For small wavelengths λ, such that δ≪λ≪Δ, a WKB solution shows that the velocity gradient operates, together with magnetic tensions, to attenuate or even stabilize the Rayleigh-Taylor instability within a certain wavelength range. An exact dispersion relation for flute modes, valid for all λ, in the form of a fourth order polynomial for the complex frequency ω, is obtained from a model with a constant velocity gradient, dV/dy within Δ, and with δ → 0. Flute modes are possible because of the existence of bands of very small magnetic shear on the dayside magnetopause (J. Geophys. Res. 103 (1998) 6703). The exact solution allows for a study of the change of the action of the velocity gradient with λ from the long-λ range where dV/dy is KH destabilizing to the short-λ range where dV/dy produces a stabilizing effect. Both, the WKB approximation and the well known tangential discontinuity model (Δ → 0) are recovered as limiting cases of the exact solution. Properties of the KH and RT instabilities, for different density ratios on either side of the magnetopause, are described. For flute modes, at very small λ the RT instability grows faster and becomes the dominant effect. However, it is shown that the growth rate remains bounded at a finite value as λ → 0, when a theory with a finite δ model is considered. To study configurations with finite, arbitrary, δ/Δ ratios, the MHD perturbation equations are solved numerically, using hyperbolic tangent functions for both the density and velocity transitions across the magnetopause. To examine the influence of different δ/Δ ratios on the growth rates of KH and RT, calculations are performed for different δ/Δ, with and without acceleration, and for two different density ratios. It is found that the general features exhibited by the constant dV/dy model, are confirmed by these numerical solutions. The stability of pristine magnetopauses, and the possibility of observing some theoretical predictions during magnetopause crossings in ongoing missions, are discussed. © Published by Elsevier Ltd.

Registro:

Documento: Artículo
Título:The stability of the pristine magnetopause
Autor:Gratton, F.T.; Gnavi, G.; Farrugia, C.J.; Bender, L.
Filiación:Inst. de Física del Plasma, CONICET, Ciudad Universitaria, Pab. 1, 1428 Buenos Aires, Argentina
Space Science Center, Department of Physics, University of New Hampshire, Durham, NH, United States
Fundación Bunge y Born, Buenos Aires, Argentina
Palabras clave:Bands of low magnetic shear across the dayside magnetopause; Kelvin - Helmholtz and Rayleigh - Taylor instabilities; MHD stability of the magnetopause; Pristine magnetopause; Magnetic field effects; Magnetohydrodynamics; Perturbation techniques; Velocity measurement; Magnetopause; Space research
Año:2003
Volumen:51
Número:12
Página de inicio:769
Página de fin:783
DOI: http://dx.doi.org/10.1016/S0032-0633(03)00113-2
Título revista:Planetary and Space Science
Título revista abreviado:Planet. Space Sci.
ISSN:00320633
CODEN:PLSSA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00320633_v51_n12_p769_Gratton

Referencias:

  • Baumjohann, W., Bauer, O.H., Haerendel, G., Junginger, H., Amata, E., Magnetospheric plasma drifts during a sudden impulse (1983) J. Geophys. Res., 88, p. 9287
  • Belmont, G., Chanteur, G., Advances in magnetopause Kelvin-Helmholtz instability studies (1989) Phys. Scr., 124, p. 124
  • Berchem, J., Russell, C.T., The thickness of the magnetopause current layer: ISEE 1 and 2 observations (1982) J. Geophys. Res., 87, p. 2108
  • Cahill, L.J., Winckler, J.R., Periodic magnetopause oscillations observed with the GOES satellites on March 24, 1991 (1992) J. Geophys. Res., 97, p. 8239
  • Chandrasekhar, S., (1961) Hydrodynamic and Hydromagnetic Stability, , New York: Oxford University Press
  • Chen, S.H., Kivelson, M.G., Nonsinusoidal waves at the Earth's magnetopause (1993) Geophys. Res. Lett., 20, p. 2699
  • Chen, S.H., Kivelson, M.G., Golsling, J.T., Walker, R.J., Lazarus, A.J., Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward magnetic field (1993) J. Geophys. Res., 98, p. 5727
  • Drazin, P.G., Reid, W.H., (1981) Hydrodynamic Stability, , Cambridge: Cambridge University Press
  • Eastman, T.E., Hones E.W., Jr., Bame, S.J., Asbridge, J.R., The magnetospheric boundary layer: Site of plasma momentum and energy transfer from the magnetosheath into the magnetosphere (1976) Geophys. Res. Lett., 3, p. 685
  • Eastman, T.E., Fuselier, S.A., Gosling, J.T., Magnetopause crossing without a boundary layer (1996) J. Geophys. Res., 101, p. 49
  • Erkaev, N.V., Results of the investigation of MHD flow around the magnetosphere (1988) Geomagn. Aeron., 28, p. 455
  • Farrugia, C.J., Freeman, M.P., Cowley, S.W.H., Southwood, D.J., Lockwood, M., Etemadi, A., Pressure-driven magnetopause motions and attendant response on the ground (1989) Planet. Space Sci., 37, p. 589
  • Farrugia, C.J., Gratton, F.T., Bender, L., Biernat, H.K., Erkaev, N.V., Quinn, J.M., Torbert, R.B., Dennisenko, V., Charts of joint Kelvin-Helmholtz and Rayleigh-Taylor instabilities at the dayside magnetopause for strongly northward interplanetary magnetic field (1998) J. Geophys. Res., 103, p. 6703
  • Farrugia, C.J., Gratton, F.T., Bender, L., Quinn, J.M., Torbert, R.B., Erkaev, N.V., Biernat, H.K., (1998) Recent Work on the Kelvin-helmholtz Instability at the Dayside Magnetopause and Boundary Layer, p. 1. , Moen, J., et al. (Eds.), Polar Cap Boundary Phenomena. Kluwer Academic Publishers, Netherlands
  • Farrugia, C.J., Gratton, F.T., Torbert, R.B., The role of viscous-type processes in solar wind-magnetosphere interactions, in Challenges to long-standing unsolved problems in space physics in the 20th century (2001) Space Sci. Rev., 95, p. 443
  • Farrugia, C.J., Gratton, F.T., Torbert, R.B., Bender, L., Gnavi, G., Ogilvie, K.W., Stauning, P., On the dependence of dayside Kelvin-Helmholtz activity on IMF orientation (2003) Adv. Space Res., 31 (4), p. 1105
  • Fitzenreiter, R.J., Ogilvie, K.W., Kelvin-Helmholtz instability at the magnetopause: Observations (1995) Physics of the Magnetopause, Geophysical Monograph Series, 90, p. 277. , Song, P., Sonnerup, B.U.Ö., Thomsen, M.F. (Eds.), American Geophysical Union, Washington, DC
  • Freeman, M.P., Farrugia, C.J., Cowley, S.W.H., Southwood, D.J., Lockwood, M., Etemadi, A., The response of the magnetosphere-ionosphere system to solar wind dynamic pressure variations (1990) Geophysical Monograph Series, 58, p. 611. , Russell, C.T., Priest, E.R., Lee, L.C. (Eds.), Physics of Magnetic Flux Ropes, American Geophysical Union, Washington, DC
  • González, A.G., Gratton, J., The role of a density jump in the Kelvin-Helmholtz instability of a compressible plasma (1994) J. Plasma Phys., 52, p. 223
  • González, A.G., Gratton, J., Gratton, F.T., Farrugia, C.J., Compressible Kelvin-Helmholtz instability at the terrestrial magnetopause (2002) Brazilian J. of Physics, 32, p. 945
  • Gratton, J., Gratton, F.T., González, A.G., Convective instability of internal modes in accelerated compressible plasmas (1988) Plasma Phys. Contr. Fusion, 30, p. 435
  • Gratton, F.T., Farrugia, C.J., Cowley, S.W., Is the magnetopause Rayleigh-Taylor unstable sometimes? (1996) J. Geophys. Res., 101, p. 4929
  • Kivelson, M.G., Southwood, D.J., Coupling of global magnetospheric MHD eigenmodes to field line resonances (1986) J. Geophys. Res., 91, p. 4345
  • Kivelson, M.G., Chen, S.H., The magnetopause: Surface waves and instabilities and their possible dynamical consequences (1995) Physics of the Magnetopause, Geophysical Monograph Series, 90, p. 257. , Song, P., Sonnerup y, B.U.Ö., Thomsen, M.F. (Eds.), American Geophysical Union, Washington, DC
  • Lee, L.C., Albano, R.K., Kan, J.R., Kelvin-Helmholtz instability in the magnetopause-boundary layer region (1981) J. Geophys. Res., 86, p. 54
  • Mishin, V.V., Accelerated motions of the magnetopause as a trigger of the Kelvin-Helmholtz instability (1993) J. Geophys. Res., 98, p. 21365
  • Miura, A., Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-magnetosphere interaction (1984) J. Geophys. Res., 89, p. 801
  • Miura, A., Simulation of Kelvin-Helmholtz instability at the magnetospheric boundary (1987) J. Geophys. Res., 92, p. 3195
  • Miura, A., Kelvin-Helmholtz instability at the magnetopause: Computer simulations (1995) Physics of the Magnetopause, Geophysical Monograph Series, 90, p. 285. , Song, P., Sonnerup, B.U.Ö., Thomsen, M.F. (Eds.), American Geophysical Union, Washington, DC
  • Ogilvie, K.W., Fitzenreiter, R.J., The Kelvin-Helmholtz instability at the magnetopause and inner boundary layer surface (1989) J. Geophys. Res., 94, p. 15113
  • Paschmann, G., Baumjohann, W., Scopke, N., Phan, T.D., Lühr, H., Structure of the dayside magnetopause for low magnetic shear (1993) J. Geophys. Res., 98, p. 13409
  • Phan, T.D., Paschmann, G., Baumjohann, W., Sckopke, N., Lühr, H., The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations (1994) J. Geophys. Res., 99, p. 121
  • Sckopke, N., Paschmann, G., Haerendel, G., Sonnerup, B.U.O., Bame, S.J., Forbes, T.G., Hones E.W., Jr., Russell, C.T., Structure of the low-latitude boundary layer (1981) J. Geophys. Res., 86, p. 2099
  • Smit, G.T., Oscillatory motion of the nose region of the magnetopause (1968) J. Geophys. Res., 73, p. 4990
  • Song, P., Russell, C.T., Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field (1992) J. Geophys. Res., 97, p. 1411
  • Sonnerup, B.U.Ö., Papamastorakis, I., Paschmann, G., Lühr, H., Magnetopause properties from AMPTE/IRM observations of the convection electric field: Method development (1987) J. Geophys. Res., 92, p. 12137

Citas:

---------- APA ----------
Gratton, F.T., Gnavi, G., Farrugia, C.J. & Bender, L. (2003) . The stability of the pristine magnetopause. Planetary and Space Science, 51(12), 769-783.
http://dx.doi.org/10.1016/S0032-0633(03)00113-2
---------- CHICAGO ----------
Gratton, F.T., Gnavi, G., Farrugia, C.J., Bender, L. "The stability of the pristine magnetopause" . Planetary and Space Science 51, no. 12 (2003) : 769-783.
http://dx.doi.org/10.1016/S0032-0633(03)00113-2
---------- MLA ----------
Gratton, F.T., Gnavi, G., Farrugia, C.J., Bender, L. "The stability of the pristine magnetopause" . Planetary and Space Science, vol. 51, no. 12, 2003, pp. 769-783.
http://dx.doi.org/10.1016/S0032-0633(03)00113-2
---------- VANCOUVER ----------
Gratton, F.T., Gnavi, G., Farrugia, C.J., Bender, L. The stability of the pristine magnetopause. Planet. Space Sci. 2003;51(12):769-783.
http://dx.doi.org/10.1016/S0032-0633(03)00113-2