Artículo

Santin, F.; Bhogale, S.; Fantino, E.; Grandellis, C.; Banerjee, A.K.; Ulloa, R.M."Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development" (2017) Physiologia Plantarum. 159(2):244-261
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Among many factors that regulate potato tuberization, calcium and calcium-dependent protein kinases (CDPKs) play an important role. CDPK activity increases at the onset of tuber formation with StCDPK1 expression being strongly induced in swollen stolons. However, not much is known about the transcriptional and posttranscriptional regulation of StCDPK1 or its downstream targets in potato development. To elucidate further, we analyzed its expression in different tissues and stages of the life cycle. Histochemical analysis of StCDPK1::GUS (β-glucuronidase) plants demonstrated that StCDPK1 is strongly associated with the vascular system in stems, roots, during stolon to tuber transition, and in tuber sprouts. In agreement with the observed GUS profile, we found specific cis-acting elements in StCDPK1 promoter. In silico analysis predicted miR390 to be a putative posttranscriptional regulator of StCDPK1. Quantitative real time-polymerase chain reaction (qRT-PCR) analysis showed ubiquitous expression of StCDPK1 in different tissues which correlated well with Western blot data except in leaves. On the contrary, miR390 expression exhibited an inverse pattern in leaves and tuber eyes suggesting a possible regulation of StCDPK1 by miR390. This was further confirmed by Agrobacterium co-infiltration assays. In addition, in vitro assays showed that recombinant StCDPK1-6xHis was able to phosphorylate the hydrophilic loop of the auxin efflux carrier StPIN4. Altogether, these results indicate that StCDPK1 expression is varied in a tissue-specific manner having significant expression in vasculature and in tuber eyes; is regulated by miR390 at posttranscriptional level and suggest that StPIN4 could be one of its downstream targets revealing the overall role of this kinase in potato development. © 2016 Scandinavian Plant Physiology Society

Registro:

Documento: Artículo
Título:Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development
Autor:Santin, F.; Bhogale, S.; Fantino, E.; Grandellis, C.; Banerjee, A.K.; Ulloa, R.M.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI), CONICET and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Vuelta de Obligado 2490 2do piso, Buenos Aires, 1428, Argentina
Biology Division, Indian Institute of Science Education and Research (IISER), Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
Instituto de BiologíaMolecular y Celular de Rosario (IBR) Ocampo y Esmeralda, CONICET-Rosario, Rosario, Santa Fe, 2000, Argentina
Palabras clave:calcium-dependent protein kinase; carrier protein; indoleacetic acid derivative; microRNA; phytohormone; plant protein; plant RNA; protein kinase; antibody specificity; cytology; enzymology; gene expression regulation; genetics; growth, development and aging; metabolism; phosphorylation; plant leaf; plant root; plant tuber; potato; promoter region; reporter gene; RNA processing; transgenic plant; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Genes, Reporter; Indoleacetic Acids; Membrane Transport Proteins; MicroRNAs; Organ Specificity; Phosphorylation; Plant Growth Regulators; Plant Leaves; Plant Proteins; Plant Roots; Plant Tubers; Plants, Genetically Modified; Promoter Regions, Genetic; Protein Kinases; RNA Processing, Post-Transcriptional; RNA, Plant; Solanum tuberosum
Año:2017
Volumen:159
Número:2
Página de inicio:244
Página de fin:261
DOI: http://dx.doi.org/10.1111/ppl.12517
Handle:http://hdl.handle.net/20.500.12110/paper_00319317_v159_n2_p244_Santin
Título revista:Physiologia Plantarum
Título revista abreviado:Physiol. Plant.
ISSN:00319317
CODEN:PHPLA
CAS:carrier protein, 80700-39-6; protein kinase, 9026-43-1; calcium-dependent protein kinase; Indoleacetic Acids; Membrane Transport Proteins; MicroRNAs; Plant Growth Regulators; Plant Proteins; Protein Kinases; RNA, Plant
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319317_v159_n2_p244_Santin

Referencias:

  • Allwood, E.G., Davies, D.R., Gerrish, C., Ellis, B.E., Bolwell, G.P., Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue (1999) FEBS Lett, 457, pp. 47-52
  • Armengot, L., Marques-Bueno, M.M., Jaillais, Y., Regulation of polar auxin transport by protein and lipid kinases (2016) J Exp Bot, 67, pp. 4015-4037
  • Artschwager, E.F., Studies on the potato tuber (1924) J Agric Res, 27, pp. 809-836
  • Balamani, V., Veluthambi, K., Poovaiah, B.W., Effect of calcium on tuberization in potato (Solanum tuberosum L.) (1986) Plant Physiol, 80, pp. 856-858
  • Baskin, T.I., Auxin inhibits expansion rate independently of cortical microtubules (2015) Trends Plant Sci, 20, pp. 471-472
  • Bhogale, S., Mahajan, A.S., Natarajan, B., Rajabhoj, M., Thulasiram, H.V., Banerjee, A.K., MicroRNA156: a potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena (2014) Plant Physiol, 164, pp. 1011-1027
  • Blom, N., Gammeltoft, S., Brunak, S., Sequence and structure-based prediction of eukaryotic protein phosphorylation sites (1999) J Mol Biol, 294, pp. 1351-1362
  • Boudsocq, M., Sheen, J., CDPKs in immune and stress signaling (2013) Trends Plant Sci, 18, pp. 30-40
  • Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Sheen, J., Differential innate immune signalling via Ca2+ sensor protein kinases (2010) Nature, 464, pp. 418-422
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254
  • Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., Voinnet, O., Widespread translational inhibition by plant miRNAs and siRNAs (2008) Science, 320, pp. 1185-1190
  • Campo, S., Baldrich, P., Messeguer, J., Lalanne, E., Coca, M., San Segundo, B., Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation (2014) Plant Physiol, 165, pp. 688-704
  • Chen, C., Ridzon, D.A., Broomer, A.J., Zhou, Z., Lee, D.H., Nguyen, J.T., Barbisin, M., Guegler, K.J., Real-time quantification of microRNAs by stem-loop RT-PCR (2005) Nucleic Acids Res, 33
  • Chen, X., Grandont, L., Li, H., Hauschild, R., Paque, S., Abuzeineh, A., Rakusova, H., Friml, J., Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules (2014) Nature, 516, pp. 90-93
  • Chen, X., Wu, S., Liu, Z., Friml, J., Environmental and endogenous control of cortical microtubule orientation (2016) Trends Cell Biol, 26, pp. 409-419
  • Cheng, S.H., Sheen, J., Gerrish, C., Bolwell, G.P., Molecular identification of phenylalanine ammonia-lyase as a substrate of a specific constitutively active Arabidopsis CDPK expressed in maize protoplasts (2001) FEBS Lett, 503, pp. 185-188
  • Cutter, E.G., Structure and development of the potato plant (1978) The Potato Crop: The Scientific Basis For Improvement, pp. 70-152. , In, Harris PM, (ed), Chapman & Hall, London, pp
  • Dai, X., Zhao, P.X., psRNATarget: a plant small RNA target analysis server (2011) Nucleic Acids Res, 39, pp. 155-159
  • Donaldson, L.A., Lignification and lignin topochemistry – an ultrastructural view (2001) Phytochemistry, 57, pp. 859-873
  • Dutt, M., Dhekney, S.A., Soriano, L., Kandel, R., Grosser, J.W., Temporal and spatial control of gene expression in horticultural crops (2014) Hortic Res, 1, p. 14047
  • Eriksson, M.E., Israelsson, M., Olsson, O., Moritz, T., Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length (2000) Nat Biotechnol, 18, pp. 784-788
  • Finet, C., Jaillais, Y., Auxology: when auxin meets plant evo-devo (2012) Dev Biol, 369, pp. 19-31
  • Franz, S., Ehlert, B., Liese, A., Kurth, J., Cazale, A.C., Romeis, T., Calcium-dependent protein kinase CPK21 functions in abiotic stress response in Arabidopsis thaliana (2011) Mol Plant, 4, pp. 83-96
  • Ganguly, A., Park, M., Kesawat, M.S., Cho, H.T., Functional analysis of the hydrophilic loop in intracellular trafficking of Arabidopsis PIN-FORMED proteins (2014) Plant Cell, 26, pp. 1570-1585
  • Gargantini, P.R., Giammaria, V., Grandellis, C., Feingold, S.E., Maldonado, S., Ulloa, R.M., Genomic and functional characterization of StCDPK1 (2009) Plant Mol Biol, 70, pp. 153-172
  • Giammaria, V., Grandellis, C., Bachmann, S., Gargantini, P.R., Feingold, S.E., Bryan, G., Ulloa, R.M., StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling (2011) Planta, 233, pp. 593-609
  • Grandellis, C., Giammaria, V., Bialer, M., Santin, F., Lin, T., Hannapel, D.J., Ulloa, R.M., The novel Solanum tuberosum calcium dependent protein kinase, StCDPK3, is expressed in actively growing organs (2012) Planta, 236, pp. 1831-1848
  • Grant, C.E., Bailey, T.L., Noble, W.S., FIMO: scanning for occurrences of a given motif (2011) Bioinformatics, 27, pp. 1017-1018
  • Gutermuth, T., Lassig, R., Portes, M.T., Maierhofer, T., Romeis, T., Borst, J.W., Hedrich, R., Konrad, K.R., Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20 (2013) Plant Cell, 25, pp. 4525-4543
  • Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H., Harmon, A.C., A calcium-dependent protein kinase with a regulatory domain similar to calmodulin (1991) Science, 252, pp. 951-954
  • Hatton, D., Sablowski, R., Yung, M.H., Smith, C., Schuch, W., Bevan, M., Two classes of cis sequences contribute to tissue-specific expression of a PAL2 promoter in transgenic tobacco (1995) Plant J, 7, pp. 859-876
  • Hauffe, K.D., Lee, S.P., Subramaniam, R., Douglas, C.J., Combinatorial interactions between positive and negative cis-acting elements control spatial patterns of 4CL-1 expression in transgenic tobacco (1993) Plant J, 4, pp. 235-253
  • Higo, K., Ugawa, Y., Iwamoto, M., Korenaga, T., Plant cis-acting regulatory DNA elements (PLACE) database: 1999 (1999) Nucleic Acids Res, 27, pp. 297-300
  • Huang, Q.S., Wang, H.Y., Gao, P., Wang, G.Y., Xia, G.X., Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development (2008) Plant Cell Rep, 27, pp. 1869-1875
  • Huang, F., Zago, M.K., Abas, L., van Marion, A., Galvan-Ampudia, C.S., Offringa, R., Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport (2010) Plant Cell, 22, pp. 1129-1142
  • Huang, S.J., Chang, C.L., Wang, P.H., Tsai, M.C., Hsu, P.H., Chang, I.F., A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana (2013) J Exp Bot, 64, pp. 4343-4360
  • Israelsson, M., Eriksson, M.E., Hertzberg, M., Aspeborg, H., Nilsson, P., Moritz, T., Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth (2003) Plant Mol Biol, 52, pp. 893-903
  • Kim, J., Jung, J.H., Reyes, J.L., Kim, Y.S., Kim, S.Y., Chung, K.S., Kim, J.A., Park, C.M., MicroRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems (2005) Plant J, 42, pp. 84-94
  • Kloosterman, B., De Koeyer, D., Griffiths, R., Flinn, B., Steuernagel, B., Scholz, U., Sonnewald, S., Bachem, C.W., Genes driving potato tuber initiation and growth: identification based on transcriptional changes using the POCI array (2008) Funct Integr Genomics, 8, pp. 329-340
  • Kloosterman, B., Abelenda, J.A., Gomez Mdel, M., Oortwijn, M., de Boer, J.M., Kowitwanich, K., Horvath, B.M., Bachem, C.W., Naturally occurring allele diversity allows potato cultivation in northern latitudes (2013) Nature, 495, pp. 246-250
  • Lakhotia, N., Joshi, G., Bhardwaj, A.R., Katiyar-Agarwal, S., Agarwal, M., Jagannath, A., Goel, S., Kumar, A., Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing (2014) BMC Plant Biol, 14, p. 6
  • Lescot, M., Dehais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., Rouze, P., Rombauts, S., PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences (2002) Nucleic Acids Res, 30, pp. 325-327
  • Li, G., Boudsocq, M., Hem, S., Vialaret, J., Rossignol, M., Maurel, C., Santoni, V., The calcium-dependent protein kinase CPK7 acts on root hydraulic conductivity (2015) Plant Cell Environ, 38, pp. 1312-1320
  • Liu, W., Stewart, C.N., Jr., Plant synthetic promoters and transcription factors (2016) Curr Opin Biotechnol, 37, pp. 36-44
  • Liu, Q., Wang, F., Axtell, M.J., Analysis of complementarity requirements for plant microRNA targeting using a Nicotiana benthamiana quantitative transient assay (2014) Plant Cell, 26, pp. 741-753
  • Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(–Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408
  • Luo, X., Chen, Z., Gao, J., Gong, Z., Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis (2014) Plant J, 79, pp. 44-55
  • MacIntosh, G.C., Ulloa, R.M., Raices, M., Tellez-Inon, M.T., Changes in calcium-dependent protein kinase activity during in vitro tuberization in potato (1996) Plant Physiol, 112, pp. 1541-1550
  • Manimaran, P., Mangrauthia, S.K., Sundaram, R.M., Balachandran, S.M., Constitutive expression and silencing of a novel seed specific calcium dependent protein kinase gene in rice reveals its role in grain filling (2015) J Plant Physiol, 174, pp. 41-48
  • Martin, A., Adam, H., Diaz-Mendoza, M., Zurczak, M., Gonzalez-Schain, N.D., Suarez-Lopez, P., Graft-transmissible induction of potato tuberization by the microRNA miR172 (2009) Development, 136, pp. 2873-2881
  • Matschi, S., Werner, S., Schulze, W.X., Legen, J., Hilger, H.H., Romeis, T., Function of calcium-dependent protein kinase CPK28 of Arabidopsis thaliana in plant stem elongation and vascular development (2013) Plant J, 73, pp. 883-896
  • Mauriat, M., Moritz, T., Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation (2009) Plant J, 58, pp. 989-1003
  • Murashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol Plant, 15, pp. 473-497
  • Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A., Davis, R.M., Harper, J.F., Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes (2009) Plant J, 59, pp. 528-539
  • Nick, P., Schafer, E., Furuya, M., Auxin redistribution during first positive phototropism in corn coleoptiles: microtubule reorientation and the Cholodny–Went Theory (1992) Plant Physiol, 99, pp. 1302-1308
  • Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Visser, R.G., Genome sequence and analysis of the tuber crop potato (2011) Nature, 475, pp. 189-195
  • Raes, J., Rohde, A., Christensen, J.H., Van de Peer, Y., Boerjan, W., Genome-wide characterization of the lignification toolbox in Arabidopsis (2003) Plant Physiol, 133, pp. 1051-1071
  • Raíces, M., Chico, J.M., Tellez-Inon, M.T., Ulloa, R.M., Molecular characterization of StCDPK1, a calcium-dependent protein kinase from Solanum tuberosum that is induced at the onset of tuber development (2001) Plant Mol Biol, 46, pp. 591-601
  • Raíces, M., Gargantini, P.R., Chinchilla, D., Crespi, M., Tellez-Inon, M.T., Ulloa, R.M., Regulation of CDPK isoforms during tuber development (2003) Plant Mol Biol, 52, pp. 1011-1024
  • Raíces, M., MacIntosh, G.C., Ulloa, R.M., Gargantini, P.R., Vozza, N.F., Tellez-Inon, M.T., Sucrose increases calcium-dependent protein kinase and phosphatase activities in potato plants (2003) Cell Mol Biol, 49, pp. 959-964
  • Raíces, M., Ulloa, R.M., MacIntosh, G.C., Crespi, M., Tellez-Inon, M.T., StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration (2003) J Exp Bot, 54, pp. 2589-2591
  • Reeve, R.M., Hautala, E., Weaver, M.L., Anatomy and compositional variation within potatoes (1969) Am Potato J, 46, pp. 361-373
  • Reichert, A.I., He, X.Z., Dixon, R.A., Phenylalanine ammonia-lyase (PAL) from tobacco (Nicotiana tabacum): characterization of the four tobacco PAL genes and active heterotetrameric enzymes (2009) Biochem J, 424, pp. 233-242
  • Rigo, G., Ayaydin, F., Tietz, O., Zsigmond, L., Kovacs, H., Pay, A., Salchert, K., Cseplo, A., Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis (2013) Plant Cell, 25, pp. 1592-1608
  • Rodriguez-Falcon, M., Bou, J., Prat, S., Seasonal control of tuberization in potato: conserved elements with the flowering response (2006) Annu Rev Plant Biol, 57, pp. 151-180
  • Romeis, T., Protein kinases in the plant defence response (2001) Curr Opin Plant Biol, 4, pp. 407-414
  • Roumeliotis, E., Kloosterman, B., Oortwijn, M., Kohlen, W., Bouwmeester, H.J., Visser, R.G., Bachem, C.W., The effects of auxin and strigolactones on tuber initiation and stolon architecture in potato (2012) J Exp Bot, 63, pp. 4539-4547
  • Roumeliotis, E., Visser, R.G., Bachem, C.W., A crosstalk of auxin and GA during tuber development (2012) Plant Signal Behav, 7, pp. 1360-1363
  • Roumeliotis, E., Kloosterman, B., Oortwijn, M., Visser, R.G., Bachem, C.W., The PIN family of proteins in potato and their putative role in tuberization (2013) Front Plant Sci, 4, p. 524
  • Sasayama, D., Ganguly, A., Park, M., Cho, H.T., The M3 phosphorylation motif has been functionally conserved for intracellular trafficking of long-looped PIN-FORMEDs in the Arabidopsis root hair cell (2013) BMC Plant Biol, 13, p. 189
  • Ulloa, R.M., Capiati, D.A., Giammaria, V., Signal transduction mechanisms involved in potato developmental processes (2012) Potatoes: Production, Consumption and Health Benefits, pp. 125-146. , In, Caprara C, (ed), Nova Science Publishers, pp
  • Valmonte, G.R., Arthur, K., Higgins, C.M., MacDiarmid, R.M., Calcium-dependent protein kinases in plants: evolution, expression and function (2014) Plant Cell Physiol, 55, pp. 551-569
  • Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E.F., Hellens, R.P., Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs (2007) Plant Methods, 3, p. 12
  • Viola, R., Roberts, A.G., Haupt, S., Gazzani, S., Hancock, R.D., Marmiroli, N., Machray, G.C., Oparka, K.J., Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading (2001) Plant Cell, 13, pp. 385-398
  • Xie, F., Zhang, B., Target-align: a tool for plant microRNA target identification (2010) Bioinformatics, 26, pp. 3002-3003
  • Xu, X., van Lammeren, A.A., Vermeer, E., Vreugdenhil, D., The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro (1998) Plant Physiol, 117, pp. 575-584
  • Xu, J., Tian, Y.S., Peng, R.H., Xiong, A.S., Zhu, B., Jin, X.F., Gao, F., Yao, Q.H., AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis (2010) Planta, 231, pp. 1251-1260
  • Yang, J., Zhang, Y., Cui, X., Yao, W., Yu, X., Cen, P., Hodges, S.E., Li, M., Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer (2013) Curr Mol Med, 13, pp. 401-409
  • Zhang, R., Marshall, D., Bryan, G.J., Hornyik, C., Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing (2013) PLoS One, 8
  • Zhou, L., Lan, W., Jiang, Y., Fang, W., Luan, S., A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth (2014) Mol Plant, 7, pp. 369-376
  • Zhu, S.Y., Yu, X.C., Wang, X.J., Zhao, R., Li, Y., Fan, R.C., Shang, Y., Zhang, D.P., Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis (2007) Plant Cell, 19, pp. 3019-3036
  • Zuker, M., Mfold web server for nucleic acid folding and hybridization prediction (2003) Nucleic Acids Res, 31, pp. 3406-3415

Citas:

---------- APA ----------
Santin, F., Bhogale, S., Fantino, E., Grandellis, C., Banerjee, A.K. & Ulloa, R.M. (2017) . Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiologia Plantarum, 159(2), 244-261.
http://dx.doi.org/10.1111/ppl.12517
---------- CHICAGO ----------
Santin, F., Bhogale, S., Fantino, E., Grandellis, C., Banerjee, A.K., Ulloa, R.M. "Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development" . Physiologia Plantarum 159, no. 2 (2017) : 244-261.
http://dx.doi.org/10.1111/ppl.12517
---------- MLA ----------
Santin, F., Bhogale, S., Fantino, E., Grandellis, C., Banerjee, A.K., Ulloa, R.M. "Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development" . Physiologia Plantarum, vol. 159, no. 2, 2017, pp. 244-261.
http://dx.doi.org/10.1111/ppl.12517
---------- VANCOUVER ----------
Santin, F., Bhogale, S., Fantino, E., Grandellis, C., Banerjee, A.K., Ulloa, R.M. Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiol. Plant. 2017;159(2):244-261.
http://dx.doi.org/10.1111/ppl.12517