Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Asr1, a tomato gene induced by abiotic stress, belongs to a family, composed by at least three members, involved in adaptation to dry climates. To understand the mechanism by which proteins of this family seem to protect cells from water loss in plants, we expressed Asr1 in the heterologous expression system Saccharomyces cerevisiae under the control of a galactose-inducible promoter. In a mutant yeast strain deficient in one component of the stress-responsive high-osmolarity glycerol (HOG) pathway, namely the MAP kinase Hog1, the synthesis of ASR1 protein restores growth under osmotic stress conditions such as 0.5 M NaCl and 1.2 M sorbitol. In contrast, the rescuing of this phenotype was less evident using a wild-type strain or the upstream MAP kinase kinase (Pbs2)-deficient strain. In both knock-out strains impaired in glycerol synthesis because of a dysfunctional HOG pathway, but not in wild-type, ASR1 led to the accumulation of endogenous glycerol in an osmotic stress-independent and unrestrained manner. These data suggest that ASR1 complements yeast HOG-deficient phenotypes by inducing downstream components of the HOG pathway. The results are discussed in terms of the function of ASR proteins in planta at the molecular and cellular level. Copyright © Physiologia Plantarum 2006.

Registro:

Documento: Artículo
Título:ASR1, a stress-induced tomato protein, protects yeast from osmotic stress
Autor:Moretti, M.B.; Maskin, L.; Gudesblat, G.; García, S.C.; Iusem, N.D.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Laboratorio de Fisiología Y Biología Molecular, Departamento de Fisiología, Biología Molecular Y Celular and IFIBYNE-CONICET, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Palabras clave:Biosynthesis; Fruits; Genes; Glycerol; Osmosis; Yeast; Endogenous glycerol; Osmotic stress; Tomato protein; Proteins; Tomatoes; Lycopersicon esculentum; Saccharomyces cerevisiae
Año:2006
Volumen:127
Número:1
Página de inicio:111
Página de fin:118
DOI: http://dx.doi.org/10.1111/j.1399-3054.2006.00664.x
Título revista:Physiologia Plantarum
Título revista abreviado:Physiol. Plant.
ISSN:00319317
CODEN:PHPLA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00319317_v127_n1_p111_Moretti.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319317_v127_n1_p111_Moretti

Referencias:

  • Albertyn, J., Hohmann, S., Thevelein, J.M., Prior, B.A., GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway (1994) Mol Cell Biol, 14, pp. 4135-4144
  • Amitai-Zeigerson, H., Scolnik, P.A., Bar-Zvi, D., Tomato Asr1 mRNA and protein are transiently expressed following salt stress, osmotic stress and treatment with abscisic acid (1995) Plant Sci, 110, pp. 205-213
  • Boyer, J.S., Plant productivity and environment (1982) Science, 218, pp. 443-448
  • Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities utilizing the principle of protein-dye-binding (1976) Anal Biochem, 72, pp. 248-254
  • Brewster, J.L., De Valoir, T., Dwyer, N.D., Winter, E., Gustin, M.C., An osmosensing signal transduction pathway in yeast (1993) Science, 259, pp. 1760-1763
  • Cadinanos, J., Varela, I., Mandel, D.A., Schmidt, W.K., Diaz-Perales, A., Lopez-Otin, C., Freije, J.M., AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes (2003) J Biol Chem, 278, pp. 42091-42097
  • Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., Atanassova, R., A grape ASR protein involved in sugar and abscisic acid signaling (2003) Plant Cell, 15, pp. 2165-2180
  • Chen, D.C., Yang, B.C., Kuo, T.T., One-step transformation of yeast in stationary phase (1992) Curr Genet, 21, pp. 83-84
  • Choi, E.S., Sohn, J.H., Rhee, S.K., Optimization of the expression system using galactose-inducible promoter for the production of anticoagulant hirudin in Saccharomyces cerevisiae (1994) Appl Microbiol Biotechnol, 42, pp. 587-594
  • Chung, H.J., Fu, H.Y., Thomas, T.L., Abscisic acid-inducible nuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene (2005) Planta, 220, pp. 424-433
  • Covic, L., Silva, N.F., Lew, R.R., Functional characterization of ARAKIN (ATMEKK1): A possible mediator in an osmotic stress response pathway in higher plants (1999) Biochim Biophys Acta, 1451, pp. 242-254
  • Ferrigno, P., Posas, F., Koepp, D., Saito, H., Silver, P.A., Regulated nucleo/cytoplasmic exchange of Hog1 MAPK requires the importin beta homologs Nmd5 and Xpo1 (1998) EMBO J, 17, pp. 5606-5614
  • Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S., Adaptive evolution of water-stress induced gene Asr2 in Lycopersicon species dwelling in arid habitats (2003) Mol Biol Evol, 20, pp. 1955-1962
  • Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M.H., Grunwald, D., MacHerel, D., Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying (2005) Plant Physiol, 137, pp. 157-167
  • Gustin, M.C., Albertyn, J., Alexander, M., Davanport, K., MAP kinase pathways in the yeast Saccharomyces cerevisiae (1998) Microbiol Mol Biol Rev, 62, pp. 1268-1300
  • Hashimoto, K., Saito, M., Matsuoka, H., Iida, K., Iida, H., Functional analysis of a rice putative voltage-dependent Ca2+ channel, OsTPC1, expressed in yeast cells lacking its homologous gene CCH1 (2004) Plant Cell Physiol, 45, pp. 496-500
  • Ingram, J., Bartels, D., The molecular basis of dehydration tolerance in plants (1996) Ann Rev Plant Physiol Plant Mol Biol, 47, pp. 377-403
  • Iusem, N.D., Bartholomew, D.M., Hitz, W.D., Scolnik, P., Tomato transcription induced in water stress and ripening (1993) Plant Physiol, 102, pp. 1353-1354
  • Kalifa, Y., Gilad, A., Konrad, Z., Zaccai, M., Scolnik, P., Bar-Zvi, D., The water- and salt-stress regulated Asr1 gene encodes a zinc-dependent DNA-binding protein (2004) Biochem J, 381, pp. 373-378
  • Kiel, J.A., Hilbrands, R.E., Van Der Klei, I.J., Rasmussen, S.W., Salomons, F.A., Van Der Heide, M., Faber, K.N., Veenhuis, M., Hansenula polymorpha Pex1p and Pex6p are peroxisome-associated AAA proteins that functionally and physically interact (1999) Yeast, 15, pp. 1059-1078
  • Lee, S.-J., Park, S.-Y., Na, J.-G., Kim, Y.-J., Osmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae (2002) FEMS Microbiol Lett, 209, pp. 9-14
  • Mager, W.H., Siderius, M., Novel insights into the osmotic stress response of yeast (2002) FEMS Yeast Res, 2, pp. 251-257
  • Maskin, L., Gudesblat, G.E., Moreno, J.E., Carrari, F.O., Frankel, N., Sambade, A., Rossi, M.M., Iusem, N.D., Differential expression of the members of Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci, 161, pp. 739-746
  • Munns, R., Comparative physiology of salt and water stress (2002) Plant Cell Environ, 25, pp. 239-250
  • O'Rourke, S.M., Herskowitz, I., The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae (1998) Genes Dev, 12, pp. 2874-2886
  • Ramanjulu, S., Bartels, D., Drought- and desiccation-induced modulation of gene expression in plants (2002) Plant Cell Environ, 25, pp. 141-151
  • Reiser, V., Ammerer, G., Ruis, H., Nucleocytoplasmic traffic of MAP kinases (1999) Gene Expr, 7, pp. 247-254
  • Rossi, M.M., Iusem, N.D., Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid-induced protein (1994) Plant Physiol, 104, pp. 1073-1074
  • Rossi, M.M., Lijavetzky, D., Bernacchi, D., Hopp, H.E., Iusem, N.D., Asr genes belong to a tomato gene family of at least three closely linked loci located to chromosome 4 (1996) Mol Gen Genet, 252, pp. 489-492
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, , Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY , 2nd Edn
  • Sharma, P., Mondal, A.K., Evidence that C-terminal non-kinase domain of Pbs2p has a role in high osmolarity-induced nuclear localization of Hog1p (2005) Biochem Biophys Res Comm, 328, pp. 906-913
  • Shen, B., Hohmann, S., Jensen, R.G., Bohnert, H., Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast (1999) Plant Physiol, 121, pp. 45-52
  • Skriver, K., Mundy, J., Gene expression in response to abscicic acid and osmotic stress (1990) Plant Cell, 26, pp. 503-512
  • Thomashow, M.F., Role of cold-responsive genes in plant freezing tolerance (1998) Plant Physiol, 118, pp. 1-8
  • Thomashow, M.F., Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms (1999) Ann Rev Plant Physiol Plant Mol Biol, 50, pp. 571-599
  • Ton, V.K., Rao, R., Functional expression of heterologous proteins in yeast: Insights into Ca2+ signaling and Ca2+-transporting ATPases (2004) Am J Physiol Cell Physiol, 287, pp. 580-589
  • Wang, H.-J., Hsu, C.-M., Jauh, G.Y., Wang, C.-S., A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal (2005) Physiologia Plantarum, 123, pp. 314-320
  • Wheeler, G.L., Grant, C.M., Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae (2004) Physiol Plant, 120, pp. 12-20
  • Yamaguchi, T., Apse, M.P., Shi, H., Blumwald, E., Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity (2003) Proc Natl Acad Sci USA, 100, pp. 12510-12515
  • Yang, C.Y., Chen, Y.C., Jauh, G.Y., Wang, C.S., A Lily ASR Protein Involves Abscisic Acid Signaling and Confers Drought and Salt Resistance in Arabidopsis (2005) Plant Physiol, 1392, pp. 836-846
  • Zhuang, X., Xu, Y., Chong, K., Lan, L., Xue, Y., Xu, Z., OsAGAP, an ARF-GAP from rice, regulates root development mediated by auxin in Arabidopsis (2005) Plant Cell Environ, 28, pp. 147-156

Citas:

---------- APA ----------
Moretti, M.B., Maskin, L., Gudesblat, G., García, S.C. & Iusem, N.D. (2006) . ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiologia Plantarum, 127(1), 111-118.
http://dx.doi.org/10.1111/j.1399-3054.2006.00664.x
---------- CHICAGO ----------
Moretti, M.B., Maskin, L., Gudesblat, G., García, S.C., Iusem, N.D. "ASR1, a stress-induced tomato protein, protects yeast from osmotic stress" . Physiologia Plantarum 127, no. 1 (2006) : 111-118.
http://dx.doi.org/10.1111/j.1399-3054.2006.00664.x
---------- MLA ----------
Moretti, M.B., Maskin, L., Gudesblat, G., García, S.C., Iusem, N.D. "ASR1, a stress-induced tomato protein, protects yeast from osmotic stress" . Physiologia Plantarum, vol. 127, no. 1, 2006, pp. 111-118.
http://dx.doi.org/10.1111/j.1399-3054.2006.00664.x
---------- VANCOUVER ----------
Moretti, M.B., Maskin, L., Gudesblat, G., García, S.C., Iusem, N.D. ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiol. Plant. 2006;127(1):111-118.
http://dx.doi.org/10.1111/j.1399-3054.2006.00664.x