Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A central aspect of the motor control of birdsong production is the capacity to generate diverse respiratory rhythms, which determine the coarse temporal pattern of song. The neural mechanisms that underlie this diversity of respiratory gestures and the resulting acoustic syllables are largely unknown. We show that the respiratory patterns of the highly complex and variable temporal organization of song in the canary (Serinus canaria) can be generated as solutions of a simple model describing the integration between song control and respiratory centers. This example suggests that subharmonic behavior can play an important role in providing a complex variety of responses with minimal neural substrate. © 2006 The American Physical Society.

Registro:

Documento: Artículo
Título:Nonlinear model predicts diverse respiratory patterns of birdsong
Autor:Trevisan, M.A.; Mindlin, G.B.; Goller, F.
Filiación:Departamento de Física, FCEN, Pab. I, (1428) - Buenos Aires, Argentina
Department of Biology, University of Utah, Salt Lake City, UT 84112, United States
Palabras clave:Acoustics; Neurology; Respirators; Acoustic syllables; Nonlinear model; Respiratory patterns; Biomedical engineering; animal; biological model; breathing; computer simulation; motoneuron; nonlinear system; physiology; respiration center; Serinus; vocalization; Animals; Canaries; Computer Simulation; Models, Biological; Motor Neurons; Nonlinear Dynamics; Respiration; Respiratory Center; Vocalization, Animal
Año:2006
Volumen:96
Número:5
DOI: http://dx.doi.org/10.1103/PhysRevLett.96.058103
Título revista:Physical Review Letters
Título revista abreviado:Phys Rev Lett
ISSN:00319007
CODEN:PRLTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v96_n5_p_Trevisan

Referencias:

  • Konishi, M., (1994) Curr. Opin. Neurobiol., 4, p. 827. , COPUEN 0959-4388 10.1016/0959-4388(94)90130-9
  • Suthers, R., (1997) J. Neurobiol., 33, p. 632. , JNEUBZ 0022-3034 10.1002/(SICI)1097-4695(19971105)33:5<632::AID- NEU10>3.0.CO;2-B
  • Suthers, R.A., Goller, F., Pytte, C., (1999) Phil. Trans. R. Soc. B, 354, p. 927. , PTRBAE 0962-8436 10.1098/rstb.1999.0444
  • Hartley, R.S., Suthers, R.A., (1989) J. Comp. Physiol. A, 165, p. 15. , JCPADN 1432-1351 10.1007/BF00613795
  • Hartley, R.S., (1990) Respiration Physiology, 81, p. 177. , RSPYAK 0034-5687
  • Gilmore, R., Lefranc, M., (2003) The Topology of Chaos, , Wiley, New York
  • Abarbanel, H.D.I.A., (1996) Analysis of Observed Chaotic Data, , Springer, New York
  • Wild, J.M., (2004) Ann. N.Y. Acad. Sci., 1016, p. 438. , ANYAA9 0077-8923 10.1196/annals.1298.016
  • Sturdy, C.B., Wild, J.M., Mooney, R., (2003) J. Neurosci., 23, p. 1072. , JNRSDS 0270-6474
  • Hoppensteadt, F.C., Izhikevich, E.M., (1997) Weakly Connected Neural Networks, , Springer-Verlag, Berlin
  • Hahnloser, H.R., Kozhevnikov, A.A., Fee, M.S., (2002) Nature (London), 419, p. 65. , NATUAS 0028-0836 10.1038/nature00974
  • Yu, A.C., Margoliash, D., (1996) Science, 273, p. 1871. , SCIEAS 0036-8075
  • Keener, J., Sneyd, J., (1998) Mathematical Physiology, , Springer, New York
  • Solari, H.G., Natiello, M.A., Mindlin, G.B., (1996) Nonlinear Dynamics: A Two Way Trip from Physics to Math, , IOP, London
  • Feingold, M., Gonzalez, D.L., Piro, O., Viturro, H., (1988) Phys. Rev. A, 37, p. 4060. , PLRAAN 1050-2947 10.1103/PhysRevA.37.4060
  • Gonzalez, D.L., Piro, O., (1983) Phys. Rev. Lett., 50, p. 870. , PRLTAO 0031-9007 10.1103/PhysRevLett.50.870
  • Glass, L., (2001) Nature (London), 410, p. 277. , NATUAS 0028-0836 10.1038/35065745
  • Golubitsky, M.S., Stewart, I., Buono, P., Collins, J.J., (1999) Nature (London), 401, p. 693. , NATUAS 0028-0836 10.1038/44416

Citas:

---------- APA ----------
Trevisan, M.A., Mindlin, G.B. & Goller, F. (2006) . Nonlinear model predicts diverse respiratory patterns of birdsong. Physical Review Letters, 96(5).
http://dx.doi.org/10.1103/PhysRevLett.96.058103
---------- CHICAGO ----------
Trevisan, M.A., Mindlin, G.B., Goller, F. "Nonlinear model predicts diverse respiratory patterns of birdsong" . Physical Review Letters 96, no. 5 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.058103
---------- MLA ----------
Trevisan, M.A., Mindlin, G.B., Goller, F. "Nonlinear model predicts diverse respiratory patterns of birdsong" . Physical Review Letters, vol. 96, no. 5, 2006.
http://dx.doi.org/10.1103/PhysRevLett.96.058103
---------- VANCOUVER ----------
Trevisan, M.A., Mindlin, G.B., Goller, F. Nonlinear model predicts diverse respiratory patterns of birdsong. Phys Rev Lett. 2006;96(5).
http://dx.doi.org/10.1103/PhysRevLett.96.058103