Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Jet substructure observables have significantly extended the search program for physics beyond the standard model at the Large Hadron Collider. The state-of-the-art tools have been motivated by theoretical calculations, but there has never been a direct comparison between data and calculations of jet substructure observables that are accurate beyond leading-logarithm approximation. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This Letter documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross section is measured as a function of log10ρ 2 , where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 fb ?1 of √ s = 13 TeV protonproton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations. © 2018 CERN, for the ATLAS Collaboration.

Registro:

Documento: Artículo
Título:Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector
Autor:Aaboud, M. et al.
Este artículo contiene 2886 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 2886 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Palabras clave:Drops; Hadrons; Intelligent systems; Microstrip devices; Monte Carlo methods; Particle accelerators; Detector effects; Differential cross section; Large Hadron Collider; Logarithm approximation; Proton proton collisions; The standard model; Theoretical calculations; Transverse momenta; Tellurium compounds
Año:2018
Volumen:121
Número:9
DOI: http://dx.doi.org/10.1103/PhysRevLett.121.092001
Título revista:Physical Review Letters
Título revista abreviado:Phys Rev Lett
ISSN:00319007
CODEN:PRLTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v121_n9_p_Aaboud

Referencias:

  • There Are Nearly 100 Public Search Results from ATLAS and CMS As Well As An even Larger Number of Phenomenological Proposals to Use Jet Substructure to Enhance Various Searches, , See e.g., Refs. [2, 3] for the first phenomenological proposals and Refs. [4-7] for representative ATLAS and CMS performance studies
  • Butterworth, J.M., Cox, B.E., Forshaw, J.R., Ww scattering at the cern lhc (2002) Phys. Rev. D, 65, p. 096014
  • Butterworth, J.M., Davison, A.R., Rubin, M., Salam, G.P., Jet substructure as a new higgs search channel at the lhc (2008) Phys. Rev. Lett, 100, p. 242001
  • Identification of high transverse momentum top quarks in pp collisions at ffiffiffi ps = 8 TeV with the ATLAS detector (2016) J. High Energy Phys, 6, p. 093
  • Identification of boosted, hadronically decaying w bosons and comparisons with atlas data taken at ffiffiffisp = 8 TeV, Eur (2016) Phys. J. C, 76, p. 154
  • Identification techniques for highly boosted w bosons that decay into hadrons (2014) J. High Energy Phys, 12, p. 017
  • Boosted top jet tagging at cms (2014) CMS-PAS-JME-13-007, , https://cds.cern.ch/record/1647419
  • Larkoski, A.J., Moult, I., Nachman, B., Jet Substructure at the Large Hadron Collider: A Review of Recent Advances in Theory and Machine Learning, , arXiv
  • Buckley, A., General-purpose event generators for lhc physics (2011) Phys. Rep, 504, p. 145
  • Hoang, A.H., Mantry, S., Pathak, A., Stewart, I.W., Extracting A Short Distance Top Mass with Light Grooming, , arXiv
  • Salam, G.P., Towards jetography (2010) Eur. Phys. J. C, 67, p. 637
  • Dasgupta, M., Salam, G.P., Resummation of nonglobal qcd observables (2001) Phys. Lett. B, 512, p. 323
  • Dasgupta, M., Fregoso, A., Marzani, S., Salam, P.G., Towards an understanding of jet substructure, j (2013) High Energy Phys, 9, p. 029
  • Larkoski, A.J., Marzani, S., Soyez, G., Thaler, J., Soft drop (2014) J. High Energy Phys, 5, p. 146
  • Marzani, S., Schunk, L., Soyez, G., A study of jet mass distributions with grooming (2017) J. High Energy Phys, 7, p. 132
  • Marzani, S., Schunk, L., Soyez, G., The jet mass distribution after soft drop (2018) Eur. Phys. J. C, 78, p. 96
  • Frye, C., Larkoski, A.J., Schwartz, M.D., Yan, K., Factorization for groomed jet substructure beyond the nextto-leading logarithm (2016) J. High Energy Phys, 7, p. 064
  • Frye, C., Precision Physics with Pile-up Insensitive Observables, , arXiv
  • Ellis, S.D., Soper, D.E., Successive combination jet algorithmfor hadron collisions (1993) Phys. Rev.D, 48, p. 3160
  • Cacciari, M., Salam, G.P., Soyez, G., The anti-kt jet clustering algorithm (2008) J. High Energy Phys, 4, p. 063
  • Ellis, R.K., Stirling, W.J., Webber, B.R., (1996) QCD and Collider Physics, , Cambridge University Press, Cambridge, UK
  • Catani, S., Dokshitzer, Y.L., Seymour, M.H., Webber, R.B., Longitudinally invariant k? Clustering algorithms for hadron hadron collisions (1993) Nucl. Phys. B, 406, p. 187
  • Dokshitzer, Y.L., Leder, G.D., Moretti, S., Webber, B.R., Better jet clustering algorithms (1997) J. High Energy Phys, 8, p. 001
  • Wobisch, M., Wengler, T., Hadronization Corrections to Jet Cross-sections in Deep Inelastic Scattering, , arXiv:hep-ph/
  • The atlas experiment at the cern large hadron collider (2008) J. Instrum, 3, p. S08003
  • Cacciari, M., Salam, G.P., Soyez, G., Fastjet user manual (2012) Eur. Phys. J. C, 72, p. 1896
  • Topological cell clustering in the atlas calorimeters and its performance in lhc run 1 (2017) Eur. Phys. J. C, 77, p. 490
  • (2017) Eur. Phys. J C, 77, p. 332
  • Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at ffiffiffisp = 13 TeV with the ATLAS detector (2017) Phys. Rev. D, 96, p. 072002
  • Performance of the atlas trigger system in 2015 (2017) Eur. Phys. J. C, 77, p. 317
  • Detector Level Refers to the Measured Outputs of the Detector; Particle Level Refers to the Particles That Interact with the Detector
  • D;Agostini, G., A multidimensional unfolding method based on bayes; theorem (1995) Nucl. Instrum. Methods Phys. Res., Sect. A, 362, p. 487
  • Adye, T., Unfolding Algorithms and Tests Using RooUnfold, , arXiv
  • Sjöstrand, T., Mrenna, S., Skands, P.Z., A brief introduction to pythia 8.1, comput (2008) Phys. Commun, 178, p. 852
  • Carrazza, S., Forte, S., Rojo, J., Parton Distributions and Event Generators, , arXiv
  • Atlas pythia 8 tunes to 7 tev data (2014) ATL-PHYS-PUB-2014-021, , https://cds.cern.ch/record/1966419
  • Corke, R., Sjöstrand, T., Improved parton showers at large transverse momenta (2010) Eur. Phys. J. C, 69, p. 1
  • Gleisberg, T., Höche, S., Krauss, F., Schönherr, M., Schumann, S., Siegert, F., Winter, J., Event generation with sherpa 1.1 (2009) J. High Energy Phys, 2, p. 007
  • Catani, S., Krauss, F., Webber, B.R., Kuhn, R., Qcd matrix elements + parton showers (2001) J. High Energy Phys, 11, p. 063
  • Lai, H.-L., Guzzi, M., Huston, J., Li, Z., Nadolsky, P.M., Pumplin, J., Yuan, C.-P., New parton distributions for collider physics (2010) Phys. Rev. D, 82, p. 074024
  • Bahr, M., Herwig++ physics and manual (2008) Eur. Phys. J. C, 58, p. 639
  • Corcella, G., Knowles, I.G., Marchesini, G., Moretti, S., Odagiri, K., Richardson, P., Seymour, M.H., Webber, B.R., Herwig 6: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes (2001) J. High Energy Phys, 1, p. 010
  • Pumplin, J., Stump, D.R., Huston, J., Lai, H.-L., Nadolsky, P., Tung, W.-K., New generation of parton distributions with uncertainties from global qcd analysis (2002) J. High Energy Phys, 7, p. 012
  • Gieseke, S., Rohr, C., Siodmok, A., Colour reconnections in herwig++ (2012) Eur. Phys. J. C, 72, p. 2225
  • Webber, B., A qcd model for jet fragmentation including soft gluon interference (1984) Nucl. Phys. B, 238, p. 492
  • Martin, A.D., Stirling, W.J., Thorne, R.S., Watt, G., Parton distributions for the lhc (2009) Eur. Phys. J. C, 63, p. 189
  • Summary of atlas pythia 8 tunes (2012) ATL-PHYS-PUB-2012-003, , https://cds.cern.ch/record/1474107
  • The atlas simulation infrastructure (2010) Eur. Phys. J C., 70, p. 823
  • Geant4: A simulation toolkit (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 506, p. 250
  • Abat, E., Study of energy response and resolution of the atlas barrel calorimeter to hadrons of energies from 20-GeV to 350-GeV (2010) Nucl. Instrum. Methods Phys. Res., Sect. A, 621, p. 134
  • A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector (2017) Eur. Phys. J. C, 77, p. 26
  • Atlas calorimeter response to single isolated hadrons and estimation of the calorimeter jet scale uncertainty (2010) ATLAS-CONF-2010-052, , https://cds.cern.ch/record/1281309
  • Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC (2013) Eur. Phys. J. C, 73, p. 2305
  • In-situ measurements of the atlas large-radius jet response in 13 tev pp collisions (2017) ATLAS-CONF-2017-063, , https://cds.cern.ch/record/2275655
  • Malaescu, B., An Iterative Dynamically Stabilized Method of Data Unfolding, , arXiv
  • Catani, S., Seymour, M.H., A general algorithm for calculating jet cross-sections in nlo qcd (1997) Nucl. Phys. B, 485, p. 291
  • (1998) Nucl. Phys.Erratum, B, 510, p. 503. , E
  • Nagy, Z., Next-to-leading order calculation of three jet observables in hadron hadron collision (2003) Phys. Rev. D, 68, p. 094002
  • Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., Shao, H.-S., Zaro, M., The automated computation of tree-level and next-toleading order differential cross sections, and their matching to parton shower simulations, J (2014) High Energy Phys, 7, p. 079
  • Dulat, S., Hou, T.-J., Gao, J., Guzzi, M., Huston, J., Nadolsky, P., Pumplin, J., Yuan, C.-P., New parton distribution functions from a global analysis of quantum chromodynamics (2016) Phys. Rev. D, 93, p. 033006
  • https://www.hepdata.net/record/79953; Atlas computing acknowledgements 2016-2017 ATL-GEN-PUB-2016-002, , https://cds.cern.ch/record/2202407

Citas:

---------- APA ----------
(2018) . Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. Physical Review Letters, 121(9).
http://dx.doi.org/10.1103/PhysRevLett.121.092001
---------- CHICAGO ----------
Aaboud, M. "Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector" . Physical Review Letters 121, no. 9 (2018).
http://dx.doi.org/10.1103/PhysRevLett.121.092001
---------- MLA ----------
Aaboud, M. "Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector" . Physical Review Letters, vol. 121, no. 9, 2018.
http://dx.doi.org/10.1103/PhysRevLett.121.092001
---------- VANCOUVER ----------
Aaboud, M. Measurement of the Soft-Drop Jet Mass in pp Collisions at √ s=13 TeV with the ATLAS detector. Phys Rev Lett. 2018;121(9).
http://dx.doi.org/10.1103/PhysRevLett.121.092001