Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped Ca+40 ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016)NCAOBW2041-172310.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter. © 2017 American Physical Society.

Registro:

Documento: Artículo
Título:Twisted-Light-Ion Interaction: The Role of Longitudinal Fields
Autor:Quinteiro, G.F.; Schmidt-Kaler, F.; Schmiegelow, C.T.
Filiación:Departamento de Física and IFIBA, FCEN, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Ciudad de Buenos Aires, 1428, Argentina
QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, Mainz, 55128, Germany
Palabras clave:Electric fields; Trapped ions; Light-matter interactions; Longitudinal components; Longitudinal fields; Paraxial approximations; Propagation direction; Propagation of lights; Quadrupole transition; Standard deviation; Light propagation
Año:2017
Volumen:119
Número:25
DOI: http://dx.doi.org/10.1103/PhysRevLett.119.253203
Título revista:Physical Review Letters
Título revista abreviado:Phys Rev Lett
ISSN:00319007
CODEN:PRLTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v119_n25_p_Quinteiro

Referencias:

  • Novotny, L., Hecht, B., (2012) Principles of Nano-Optics, , (Cambridge University Press, Cambridge, England)
  • Zhan, Q., (2013) Vectorial Optical Fields: Fundamentals and Applications, , (World Scientific, Singapore)
  • Dorn, R., Quabis, S., Leuchs, G., (2003) Phys. Rev. Lett., 91, p. 233901
  • Wang, H., Shi, L., Lukyanchuk, B., Sheppard, C., Chong, C.T., (2008) Nat. Photonics, 2, p. 501
  • Meier, M., Romano, V., Feurer, T., (2007) Appl. Phys. A, 86, p. 329
  • Saito, Y., Kobayashi, M., Hiraga, D., Fujita, K., Kawano, S., Smith, N., Inouye, Y., Kawata, S., (2008) J. Raman Spectrosc., 39, p. 1643
  • Zhan, Q., (2004) Opt. Express, 12, p. 3377
  • Zambrana-Puyalto, X., Vidal, X., Molina-Terriza, G., (2014) Nat. Commun., 5, p. 4922
  • Allen, L., Beijersbergen, M.W., Spreeuw, R.J.C., Woerdman, J.P., (1992) Phys. Rev. A, 45, p. 8185
  • Padgett, M., Courtial, J., Allen, L., (2004) Phys. Today, 57 (5), p. 35
  • Andrews, D.L., Babiker, M., (2012) The Angular Momentum of Light, , (Cambridge University Press, Cambridge, England)
  • Padgett, M.J., (2017) Opt. Express, 25, p. 11265
  • Franke-Arnold, S., Radwell, N., (2017) Opt. Photonics News, 28, p. 28
  • Rubinsztein-Dunlop, H., (2017) J. Opt., 19, p. 013001
  • Quinteiro, G.F., Kuhn, T., (2014) Phys. Rev. B, 90, p. 115401
  • Quinteiro, G.F., Reiter, D.E., Kuhn, T., (2015) Phys. Rev. A, 91, p. 033808
  • Bokor, N., Iketaki, Y., Watanabe, T., Fujii, M., (2005) Opt. Express, 13, p. 10440
  • Iketaki, Y., Watanabe, T., Bokor, N., Fujii, M., (2007) Opt. Lett., 32, p. 2357
  • Monteiro, P.B., Neto, P.A.M., Nussenzveig, H.M., (2009) Phys. Rev. A, 79, p. 033830
  • Klimov, V.V., Bloch, D., Ducloy, M., Leite, J.R.R., (2012) Phys. Rev. A, 85, p. 053834
  • Zurita-Sánchez, J.R., Novotny, L., (2002) J. Opt. Soc. Am. B, 19, p. 2722
  • Pazy, E., Biolatti, E., Calarco, T., D'Amico, I., Zanardi, P., Rossi, F., Zoller, P., (2003) Europhys. Lett., 62, p. 175
  • Sbierski, B., Quinteiro, G., Tamborenea, P., (2013) J. Phys. Condens. Matter, 25, p. 385301
  • West, L., Eglash, S., (1985) Appl. Phys. Lett., 46, p. 1156
  • Siegman, A.E., (1986) Lasers, p. 276. , (University Science Books, Mill Valley, CA)
  • Lax, M., Louisell, W.H., McKnight, W.B., (1975) Phys. Rev. A, 11, p. 1365
  • Chen, C.G., Konkola, P.T., Ferrera, J., Heilmann, R.K., Schattenburg, M.L., (2002) J. Opt. Soc. Am. A, 19, p. 404
  • Barnett, S.M., Allen, L., (1994) Opt. Commun., 110, p. 670
  • Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., Pichler, H., Zoller, P., (2017) Nature (London), 541, p. 473
  • Vermersch, B., Guimond, P.-O., Pichler, H., Zoller, P., (2017) Phys. Rev. Lett., 118, p. 133601
  • Nieto-Vesperinas, M., (2017) Phil. Trans. R. Soc. A, 375, p. 20160314
  • Andrews, D.L., (2008) Structured Light and Its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces, , (Academic Press, New York)
  • Loudon, R., (2003) Phys. Rev. A, 68, p. 013806
  • Allen, L., Padgett, M.J., Babiker, M., (1999) Progress in Optics, 39 (294). , edited by E. Wolf (Elsevier, New York)
  • Quinteiro, G.F., Lucero, A.O., Tamborenea, P.I., (2010) J. Phys. Condens. Matter, 22, p. 505802
  • Schmiegelow, C.T., Schulz, J., Kaufmann, H., Ruster, T., Poschinger, U.G., Schmidt-Kaler, F., (2016) Nat. Commun., 7, p. 12998
  • http://link.aps.org/supplemental/10.1103/PhysRevLett.119.253203; Scholz-Marggraf, H.M., Fritzsche, S., Serbo, V.G., Afanasev, A., Surzhykov, A., (2014) Phys. Rev. A, 90, p. 013425
  • Mondal, P.K., Deb, B., Majumder, S., (2014) Phys. Rev. A, 89, p. 063418
  • Afanasev, A., Carlson, C.E., Solyanik, M., (2017) J. Opt., 19, p. 105401
  • Surzhykov, A., Seipt, D., Serbo, V.G., Fritzsche, S., (2015) Phys. Rev. A, 91, p. 013403
  • Quinteiro, G.F., Reiter, D.E., Kuhn, T., (2017) Phys. Rev. A, 95, p. 012106
  • Scully, M.O., Zubairy, M.S., (1997) Quantum Optics, , (Cambridge University Press, Cambridge, England)
  • Peshkov, A.A., Seipt, D., Surzhykov, A., Fritzsche, S., (2017) Phys. Rev. A, 96, p. 023407
  • Afanasev, A., Carlson, C.E., Schmiegelow, C.T., Schulz, J., Schmidt-Kaler, F., Solyanik, M., arXiv:1709.05571; Sauter, T., Neuhauser, W., Blatt, R., Toschek, P.E., (1986) Phys. Rev. Lett., 57, p. 1696
  • Schmiegelow, C., Schmidt-Kaler, F., (2012) Eur. Phys. J. Direct D, 66, p. 1
  • Koksal, K., Koc, F., (2017) Comput. Theor. Chem., 1099, p. 203
  • Shigematsu, K., Yamane, K., Morita, R., Toda, Y., (2016) Phys. Rev. B, 93, p. 045205
  • Thidé, B., Tamburini, F., Then, H., Someda, C.G., Ravanelli, R.A., arXiv:1410.4268; Noyan, M.A., Kikkawa, J.M., (2015) Appl. Phys. Lett., 107, p. 032406
  • Watzel, J., Berakdar, J., (2016) Sci. Rep., 6, p. 21475
  • Hernandez-Garcia, C., Vieira, J., Mendonca, J.T., Rego, L., Roman, J.S., Plaja, L., Ribic, P.R., Picon, A., (2017) Photonics, 4, p. 28
  • Zang, X., Lusk, M.T., (2017) Phys. Rev. A, 96, p. 013819
  • Inglot, M., Dugaev, V., (2017) Acta Phys. Pol. A, 132, p. 193

Citas:

---------- APA ----------
Quinteiro, G.F., Schmidt-Kaler, F. & Schmiegelow, C.T. (2017) . Twisted-Light-Ion Interaction: The Role of Longitudinal Fields. Physical Review Letters, 119(25).
http://dx.doi.org/10.1103/PhysRevLett.119.253203
---------- CHICAGO ----------
Quinteiro, G.F., Schmidt-Kaler, F., Schmiegelow, C.T. "Twisted-Light-Ion Interaction: The Role of Longitudinal Fields" . Physical Review Letters 119, no. 25 (2017).
http://dx.doi.org/10.1103/PhysRevLett.119.253203
---------- MLA ----------
Quinteiro, G.F., Schmidt-Kaler, F., Schmiegelow, C.T. "Twisted-Light-Ion Interaction: The Role of Longitudinal Fields" . Physical Review Letters, vol. 119, no. 25, 2017.
http://dx.doi.org/10.1103/PhysRevLett.119.253203
---------- VANCOUVER ----------
Quinteiro, G.F., Schmidt-Kaler, F., Schmiegelow, C.T. Twisted-Light-Ion Interaction: The Role of Longitudinal Fields. Phys Rev Lett. 2017;119(25).
http://dx.doi.org/10.1103/PhysRevLett.119.253203