Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We investigate the distribution of errors on a computationally useful entangled state generated via the repeated emission from an emitter undergoing strongly non-Markovian evolution. For emitter-environment coupling of pure-dephasing form, we show that the probability that a particular patten of errors occurs has a bound of Markovian form, and thus, accuracy threshold theorems based on Markovian models should be just as effective. Beyond the pure-dephasing assumption, though complicated error structures can arise, they can still be qualitatively bounded by a Markovian error model. © 2014 American Physical Society.

Registro:

Documento: Artículo
Título:Error distributions on large entangled states with non-Markovian dynamics
Autor:McCutcheon, D.P.S.; Lindner, N.H.; Rudolph, T.
Filiación:Blackett Laboratory, Imperial College London, London, SW7 2AZ, United Kingdom
Departamento de Física, FCEyN, Conicet, Pabellón 1, Buenos Aires, 1428, Argentina
Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
Department of Photonics Engineering, DTU Fotonik, Ørsteds Plads, Kongens Lyngby, 2800, Denmark
Palabras clave:Markov processes; Quantum entanglement; Entangled state; Error distributions; Error model; Error structures; Markovian model; Non-markovian dynamics; Non-markovian evolutions; Pure-dephasing; Errors
Año:2014
Volumen:113
Número:26
DOI: http://dx.doi.org/10.1103/PhysRevLett.113.260503
Título revista:Physical Review Letters
Título revista abreviado:Phys Rev Lett
ISSN:00319007
CODEN:PRLTA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v113_n26_p_McCutcheon

Referencias:

  • Unruh, W.G., (1995) Phys. Rev. A, 51, p. 992
  • Alicki, R., Horodecki, M., Horodecki, P., Horodecki, R., (2002) Phys. Rev. A, 65, p. 062101
  • Alicki, R., Lidar, D.A., Zanardi, P., (2006) Phys. Rev. A, 73, p. 052311
  • Alicki, R., arXiv:quant-ph/0411008; Kalai, G., arXiv:1106.0485;; Kalai, G., arXiv:0904.3265;; Kalai, G., arXiv:0806.2443;; Kalai, G., arXiv:quant-ph/0607021;; Kalai, G., arXiv:quant-ph/0508095; Aharonov, D., Ben-Or, M., (1997) Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC'97, pp. 176-188. , (ACM, New York)
  • Knill, E., Laflamme, R., Zurek, W.H., (1998) Proc. R. Soc. A, 454, p. 365
  • Preskill, J., (1998) Proc. R. Soc. A, 454, p. 385
  • Aliferis, P., Gottesman, D., Preskill, J., arXiv:quant-ph/0504218; Terhal, B.M., Burkard, G., (2005) Phys. Rev. A, 71, p. 012336
  • Aharonov, D., Kitaev, A., Preskill, J., (2006) Phys. Rev. Lett., 96, p. 050504
  • Preskill, J., (2013) Quant. Inf. Comput., 13, p. 181
  • Shor, P.W., (1995) Phys. Rev. A, 52, p. R2493
  • Steane, A.M., (1996) Phys. Rev. Lett., 77, p. 793
  • Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H., (1996) Phys. Rev. Lett., 77, p. 198
  • Breuer, H.-P., Petruccione, F., (2002) The Theory of Open Quantum Systems, , (Oxford University Press, New York)
  • Galai, R., Harrow, A., http://rjlipton.wordpress.com/2012/01/30/; Flammia, S.T., Harrow, A.W., (2013) Quant. Inf. Comput., 13, p. 1
  • Raussendorf, R., Briegel, H.J., (2001) Phys. Rev. Lett., 86, p. 5188
  • Raussendorf, R., Browne, D.E., Briegel, H.J., (2003) Phys. Rev. A, 68, p. 022312
  • Lindner, N.H., Rudolph, T., (2009) Phys. Rev. Lett., 103, p. 113602
  • While linear cluster states are not sufficient for universal computation, using linear optics alone, they may be fused into higher dimension structures [23], and it seems implausible that a complicated error structure could accumulate owing to the fusion process; Browne, D.E., Rudolph, T., (2005) Phys. Rev. Lett., 95, p. 010501
  • Li, Y., Aolita, L., Kwek, L.C., (2011) Phys. Rev. A, 83, p. 032313
  • Economou, S.E., Lindner, N., Rudolph, T., (2010) Phys. Rev. Lett., 105, p. 093601
  • Lin, Q., He, B., (2010) Phys. Rev. A, 82, p. 022331
  • To see this most clearly, one must insert (Equation presented) operators to the right of the (Equation presented) operators in Eq. (1), which has no effect on the initial state; Cywiński, Ł., Witzel, W.M., Das Sarma, S., (2009) Phys. Rev. B, 79, p. 245314
  • Cywiński, Ł., Witzel, W.M., Das Sarma, S., (2009) Phys. Rev. Lett., 102, p. 057601
  • Coish, W.A., Fischer, J., Loss, D., (2010) Phys. Rev. B, 81, p. 165315
  • Barnes, E., Cywiński, Ł., Das Sarma, S., (2012) Phys. Rev. Lett., 109, p. 140403
  • The coupling coefficients follow a Gaussian distribution, (Equation presented) such that (Equation presented) independent of (Equation presented). Similarly (Equation presented) such that (Equation presented), while (Equation presented)

Citas:

---------- APA ----------
McCutcheon, D.P.S., Lindner, N.H. & Rudolph, T. (2014) . Error distributions on large entangled states with non-Markovian dynamics. Physical Review Letters, 113(26).
http://dx.doi.org/10.1103/PhysRevLett.113.260503
---------- CHICAGO ----------
McCutcheon, D.P.S., Lindner, N.H., Rudolph, T. "Error distributions on large entangled states with non-Markovian dynamics" . Physical Review Letters 113, no. 26 (2014).
http://dx.doi.org/10.1103/PhysRevLett.113.260503
---------- MLA ----------
McCutcheon, D.P.S., Lindner, N.H., Rudolph, T. "Error distributions on large entangled states with non-Markovian dynamics" . Physical Review Letters, vol. 113, no. 26, 2014.
http://dx.doi.org/10.1103/PhysRevLett.113.260503
---------- VANCOUVER ----------
McCutcheon, D.P.S., Lindner, N.H., Rudolph, T. Error distributions on large entangled states with non-Markovian dynamics. Phys Rev Lett. 2014;113(26).
http://dx.doi.org/10.1103/PhysRevLett.113.260503