Artículo

Thalabard, S.; Rosenberg, D.; Pouquet, A.; Mininni, P.D. "Conformal invariance in three-dimensional rotating turbulence" (2011) Physical Review Letters. 106(20)
Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We examine turbulent flows in the presence of solid-body rotation and helical forcing in the framework of stochastic Schramm-Löwner evolution (SLE) curves. The data stem from a run with 15363 grid points, with Reynolds and Rossby numbers of, respectively, 5100 and 0.06. We average the parallel component of the vorticity in the direction parallel to that of rotation and examine the resulting ω z field for scaling properties of its zero-value contours. We find for the first time for three-dimensional fluid turbulence evidence of nodal curves being conformal invariant, belonging to a SLE class with associated Brownian diffusivity κ=3.6±0.1. SLE behavior is related to the self-similarity of the direct cascade of energy to small scales and to the partial bidimensionalization of the flow because of rotation. We recover the value of κ with a heuristic argument and show that this is consistent with several nontrivial SLE predictions. © 2011 American Physical Society.

Registro:

Documento: Artículo
Título:Conformal invariance in three-dimensional rotating turbulence
Autor:Thalabard, S.; Rosenberg, D.; Pouquet, A.; Mininni, P.D.
Filiación:Computational and Information Systems Laboratory, NCAR, P.O. Box 3000, Boulder, CO 80307, United States
CEA Saclay, L'Orme les Merisiers, France
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Brownian diffusivity; Conformal invariance; Fluid turbulence; Grid points; Nodal curves; Parallel component; Reynolds; Rossby numbers; Rotating turbulence; Scaling properties; Self-similarities; Small scale; Solid-body rotation; Conformal mapping; Three dimensional; Turbulence; Rotation
Año:2011
Volumen:106
Número:20
DOI: http://dx.doi.org/10.1103/PhysRevLett.106.204503
Handle:http://hdl.handle.net/20.500.12110/paper_00319007_v106_n20_p_Thalabard
Título revista:Physical Review Letters
Título revista abreviado:Phys Rev Lett
ISSN:00319007
CODEN:PRLTA
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00319007_v106_n20_p_Thalabard.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00319007_v106_n20_p_Thalabard

Referencias:

  • Zinn-Justin, J., (2002) Quantum Field Theory and Critical Phenomena, , Oxford University, New York
  • Werner W., arXiv:math/0303354;; Gruzberg, I.A., Kadanoff, L.P., (2004) J. Stat. Phys., 114, p. 1183. , JSTPSB 0022-4715 10.1023/B:JOSS.0000013973.40984.3b
  • Cardy, J., SLE for theoretical physicists (2005) Annals of Physics, 318 (1 SPEC. ISS.), pp. 81-118. , DOI 10.1016/j.aop.2005.04.001, PII S0003491605000527
  • Kraichnan, R.H., Montgomery, D., (1980) Rep. Prog. Phys., 43, p. 547. , RPPHAG 0034-4885 10.1088/0034-4885/43/5/001
  • Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Conformal invariance in two-dimensional turbulence (2006) Nature Physics, 2 (2), pp. 124-128. , DOI 10.1038/nphys217, PII N217
  • Cambon, C., Rubinstein, R., Godeferd, F.S., Advances in wave turbulence: Rapidly rotating flows (2004) New Journal of Physics, 6, pp. 1-29. , http://www.iop.org/EJ/abstract/1367-2630/6/1/073, DOI 10.1088/1367-2630/6/1/073, PII S1367263004757079
  • Bellet, F., Godeferd, F.S., Scott, J.F., Cambon, C., Wave turbulence in rapidly rotating flows (2006) Journal of Fluid Mechanics, 562, pp. 83-121. , DOI 10.1017/S0022112006000929, PII S0022112006000929
  • C. Simand, thèse, Ecole Normale Supérieure de Lyon, 2002; Van Bokhoven, L.J., (2009) Phys. Fluids, 21, p. 096601. , PHFLE6 1070-6631 10.1063/1.3197876
  • Mininni, P.D., Pouquet, A., (2009) Phys. Rev. e, 79, p. 026304. , PLEEE8 1539-3755 10.1103/PhysRevE.79.026304
  • Mininni, P.D., Pouquet, A., (2010) Phys. Fluids, 22, p. 035105. , PHFLE6 1070-6631 10.1063/1.3358466
  • Mininni, P.D., Pouquet, A., (2010) Phys. Fluids, 22, p. 035106. , PHFLE6 1070-6631 10.1063/1.3358471
  • Moffatt, H.K., (1969) J. Fluid Mech., 35, p. 117. , JFLSA7 0022-1120 10.1017/S0022112069000991
  • Kennedy, T., (2008) J. Stat. Phys., 131, p. 803. , JSTPSB 0022-4715 10.1007/s10955-008-9535-x
  • Marshall, D.D., Rohde, S., (2007) SIAM J. Numer. Anal., 45, p. 2577. , SJNAEQ 0036-1429 10.1137/060659119
  • Bernard, D., Boffetta, G., Celani, A., Falkovich, G., Inverse turbulent cascades and conformally invariant curves (2007) Physical Review Letters, 98 (2), p. 024501. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.024501&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.024501
  • Falkovich, G., Musacchio, S., arXiv:1012.3868; Ott, E., (1992) Phys. Rev. Lett., 69, p. 2654. , PRLTAO 0031-9007 10.1103/PhysRevLett.69.2654
  • Sorriso-Valvo, L., Carbone, V., Noullez, A., Politano, H., Pouquet, A., Veltri, P., Analysis of cancellation in two-dimensional magnetohydrodynamic turbulence (2002) Physics of Plasmas, 9 (1), p. 89. , DOI 10.1063/1.1420738

Citas:

---------- APA ----------
Thalabard, S., Rosenberg, D., Pouquet, A. & Mininni, P.D. (2011) . Conformal invariance in three-dimensional rotating turbulence. Physical Review Letters, 106(20).
http://dx.doi.org/10.1103/PhysRevLett.106.204503
---------- CHICAGO ----------
Thalabard, S., Rosenberg, D., Pouquet, A., Mininni, P.D. "Conformal invariance in three-dimensional rotating turbulence" . Physical Review Letters 106, no. 20 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.204503
---------- MLA ----------
Thalabard, S., Rosenberg, D., Pouquet, A., Mininni, P.D. "Conformal invariance in three-dimensional rotating turbulence" . Physical Review Letters, vol. 106, no. 20, 2011.
http://dx.doi.org/10.1103/PhysRevLett.106.204503
---------- VANCOUVER ----------
Thalabard, S., Rosenberg, D., Pouquet, A., Mininni, P.D. Conformal invariance in three-dimensional rotating turbulence. Phys Rev Lett. 2011;106(20).
http://dx.doi.org/10.1103/PhysRevLett.106.204503