Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the thermodynamical properties of crystals of trapped ions which are laser cooled to two different temperatures in two separate regions. We show that these properties strongly depend on the structure of the ion crystal. Such structure can be changed by varying the trap parameters and undergoes a series of phase transitions from linear to zig-zag or helicoidal configurations. Thus, we show that these systems are ideal candidates to observe and control the transition from anomalous to normal heat transport. All structures behave as 'heat superconductors', with a thermal conductivity increasing linearly with system size and a vanishing thermal gradient inside the system. However, zig-zag and helicoidal crystals turn out to be hyper sensitive to disorder having a linear temperature profile and a length independent conductivity. Interestingly, disordered 2D ion crystals are heat insulators. Sensitivity to disorder is much smaller in the 1D case. © 2016 The Royal Swedish Academy of Sciences.

Registro:

Documento: Artículo
Título:Heat transport through ion crystals
Autor:Freitas, N.; Martinez, E.A.; Paz, J.P.
Filiación:Departamento de Física, FCEyN, UBA, Ciudad Universitaria Pabellón 1, Buenos Aires, 1428, Argentina
IFIBA CONICET, UBA, FCEyN, UBA, Ciudad Universitaria Pabellón 1, Buenos Aires, 1428, Argentina
Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25/4, Innsbruck, 6020, Austria
Palabras clave:heat transport; ion crystals; quantum thermodynamics; Crystal structure; Heat transfer; Ions; Laser cooling; Phase transitions; Quantum chemistry; Thermodynamics; Trapped ions; Heat transport; Ion crystals; Laser-cooled; Linear temperature; Quantum thermodynamics; System size; Thermodynamical properties; Trap parameters; Thermal conductivity
Año:2015
Volumen:91
Número:1
DOI: http://dx.doi.org/10.1088/0031-8949/91/1/013007
Título revista:Physica Scripta
Título revista abreviado:Phys Scr
ISSN:00318949
CODEN:PHSTB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00318949_v91_n1_p_Freitas

Referencias:

  • Cerefolini, G., (2009) Nanoscale Devices: Fabrication, Functionalization, and Accessibility from the Macroscopic World, , (New York: Springer)
  • Abah, O., Rossnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E., Single-ion heat engine at maximum power (2012) Phys. Rev. Lett., 109
  • Gemmer, J., Michel, M., Mahler, G., (2009) Quantum Thermodynamics. Emergence of Thermodynamic Behavior Within Composite Quantum Systems, , (New York: Springer) (Lecture Notes in Physics)
  • Kosloff, R., Quantum thermodynamics: A dynamical viewpoint (2013) Entropy, 15, pp. 2100-2128. , 2100-28
  • Schiffer, J.P., Phase transitions in anisotropically confined ionic crystals (1993) Phys. Rev. Lett., 70, p. 818
  • Morigi, G., Fishman, S., Eigenmodes and thermodynamics of a Coulomb chain in a harmonic potential (2004) Phys. Rev. Lett., 93
  • Freitas, N., Paz, J.P., Analytic solution for heat flow through a general harmonic network (2014) Phys. Rev., 90
  • Freitas, N., Paz, J.P., Analytic solution for heat flow through a general harmonic network (2014) Phys. Rev., 90
  • Freitas, N., Paz, J.P., (2014) Phys. Rev., 90. , (erratum)
  • Häffner, H., Scalable multiparticle entanglement of trapped ions (2005) Nature, 438, pp. 643-646. , 643-6
  • Blatt, R., Wineland, D., Entangled states of trapped atomic ions (2008) Nature, 453, pp. 1008-1015. , 1008-15
  • Islam, R., Senko, C., Campbell, W.C., Korenblit, S., Smith, J., Lee, A., Edwards, E.E., Monroe, C., Emergence and frustration of magnetism with variable-range interactions in a quantum simulator (2013) Science, 340, pp. 583-587. , 583-7
  • Pyka, K., Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals (2013) Nat. Commun., 4, p. 2291
  • Pruttivarasin, T., Ramm, M., Talukdar, I., Kreuter, A., Häffner, H., Trapped ions in optical lattices for probing oscillator chain models (2011) New J. Phys., 13 (7)
  • Lin, G.D., Duan, L.M., Equilibration and temperature distribution in a driven ion chain (2011) New J. Phys., 13 (7)
  • Manzano, D., Tiersch, M., Asadian, A., Briegel, H.J., Quantum transport efficiency and fourier's law (2012) Phys. Rev., 86
  • Bermudez, A., Bruderer, M., Plenio, M.B., Controlling and measuring quantum transport of heat in trapped-ion crystals (2013) Phys. Rev. Lett., 111
  • Labaziewicz, J., Ge, Y., Antohi, P., Leibrandt, D., Brown, K.R., Chuang, I.L., Suppression of heating rates in cryogenic surface-electrode ion traps (2008) Phys. Rev. Lett., 100
  • Niedermayr, M., Lakhmanskiy, K., Kumph, M., Partel, S., Edlinger, J., Brownnutt, M., Blatt, R., Cryogenic surface ion trap based on intrinsic silicon (2014) New J. Phys., 16 (11)
  • Wineland, D.J., Monroe, C., Itano, W.M., Leibfried, D., King, B.E., Meekhof, D.M., (1997) Experimental Issues in Coherent Quantum-state Manipulation of Trapped Atomic Ions, , arXiv:quant-ph/9710025
  • Cirac, J.I., Blatt, R., Zoller, P., Phillips, W.D., Laser cooling of trapped ions in a standing wave (1992) Phys. Rev., 46, p. 2668
  • Martinez, E.A., Paz, J.P., Dynamics and thermodynamics of linear quantum open systems (2013) Phys. Rev. Lett., 110
  • Chaudhuri, A., Kundu, A., Roy, D., Dhar, A., Lebowitz, J.L., Spohn, H., Heat transport and phonon localization in mass-disordered harmonic crystals (2010) Phys. Rev., 81
  • Tisseur, F., Meerbergen, K., The quadratic eigenvalue problem (2001) SIAM Rev., 43, pp. 235-286. , 235-86
  • Velizhanin, K.A., Chien, C.-C., Dubi, Y., Zwolak, M., (2013) Intrinsic Thermal Conductance, Extended Reservoir Simulations, and Kramers Transition Rate Theory, , arXiv:1312.5422
  • Dhar, A., Heat transport in low-dimensional systems (2008) Adv. Phys., 57, pp. 457-537. , 457-537
  • Lepri, S., Livi, R., Politi, A., Thermal conduction in classical low-dimensional lattices (2003) Phys. Rep., 377, pp. 1-80. , 1-80
  • Stick, D., Hensinger, W.K., Olmschenk, S., Madsen, M.J., Schwab, K., Monroe, C., Ion trap in a semiconductor chip (2006) Nat. Phys., 2, pp. 36-39. , 36-9
  • Seidelin, S., Microfabricated surface-electrode ion trap for scalable quantum information processing (2006) Phys. Rev. Lett., 96
  • Enderlein, M., Huber, T., Schneider, C., Schaetz, T., Single ions trapped in a one-dimensional optical lattice (2012) Phys. Rev. Lett., 109
  • Storn, R., Price, K., Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces (1997) J. Glob. Optim., 11, pp. 341-359. , 341-59

Citas:

---------- APA ----------
Freitas, N., Martinez, E.A. & Paz, J.P. (2015) . Heat transport through ion crystals. Physica Scripta, 91(1).
http://dx.doi.org/10.1088/0031-8949/91/1/013007
---------- CHICAGO ----------
Freitas, N., Martinez, E.A., Paz, J.P. "Heat transport through ion crystals" . Physica Scripta 91, no. 1 (2015).
http://dx.doi.org/10.1088/0031-8949/91/1/013007
---------- MLA ----------
Freitas, N., Martinez, E.A., Paz, J.P. "Heat transport through ion crystals" . Physica Scripta, vol. 91, no. 1, 2015.
http://dx.doi.org/10.1088/0031-8949/91/1/013007
---------- VANCOUVER ----------
Freitas, N., Martinez, E.A., Paz, J.P. Heat transport through ion crystals. Phys Scr. 2015;91(1).
http://dx.doi.org/10.1088/0031-8949/91/1/013007