Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The photophysical behavior of two xanthene dyes, Eosin Y and Phloxine B, included in microcrystalline cellulose particles is studied in a wide concentration range, with emphasis on the effect of dye concentration on fluorescence and triplet quantum yields. Absolute fluorescence quantum yields in the solid-state were determined by means of diffuse reflectance and steady-state fluorescence measurements, whereas absolute triplet quantum yields were obtained by laser-induced optoacoustic spectroscopy and their dependence on dye concentration was confirmed by diffuse reflectance laser flash photolysis and time-resolved phosphorescence measurements. When both quantum yields are corrected for reabsorption and reemission of radiation, ΦF values decrease strongly on increasing dye concentration, while a less pronounced decay is observed for ΦT. Fluorescence concentration quenching is attributed to the formation of dye aggregates or virtual traps resulting from molecular crowding. Dimeric traps are however able to generate triplet states. A mechanism based on the intermediacy of charge-transfer states is proposed and discussed. Calculation of parameters for photoinduced electron transfer between dye molecules within the traps evidences the feasibility of the proposed mechanism. Results demonstrate that photoactive energy traps, capable of yielding dye triplet states, can be formed even in highly-concentrated systems with random dye distributions. © 2018 The American Society of Photobiology

Registro:

Documento: Artículo
Título:Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation
Autor:Litman, Y.E.; Rodríguez, H.B.; Braslavsky, S.E.; San Román, E.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
Fritz Haber Institute of the Max Planck Society, Berlin, Germany
Año:2018
Volumen:94
Número:5
Página de inicio:865
Página de fin:874
DOI: http://dx.doi.org/10.1111/php.12978
Título revista:Photochemistry and Photobiology
Título revista abreviado:Photochem. Photobiol.
ISSN:00318655
CODEN:PHCBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00318655_v94_n5_p865_Litman

Referencias:

  • López, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys., 12, pp. 2246-2253
  • Beddard, G.S., Porter, G., Concentration quenching in chlorophyll (1976) Nature, 260, pp. 366-367
  • Litman, Y., Rodríguez, H.B., San Román, E., Tuning the concentration of dye loaded polymer films for maximum photosensitization efficiency: Phloxine B in poly(2-hydroxyethyl methacrylate) (2016) Photochem. Photobiol. Sci., 15, pp. 80-85
  • Ezquerra Riega, S.D., Rodríguez, H.B., San Román, E., Rose bengal in poly(2-hydroxyethyl methacrylate) thin films: Self-quenching by photoactive energy traps (2017) Methods Appl. Fluoresc., 5, p. 014010
  • Rabinowitch, E.I., (1951) Photosynthesis and Related Processes, 2, p. 759. , Part 1, Interscience, Geneva, Switzerland
  • Birks, J.B., (1970) Photophysics of Aromatic Molecules, , Wiley, London
  • Mei, J., Leung, N.L.C., Kwok, R.T.K., Lam, J.W.Y., Tang, B.Z., Aggregation-induced emission: Together we shine, united we soar! (2015) Chem. Rev., 115, pp. 11718-11940
  • Dong, Y., Crystallization-induced emission enhancement (2013) Aggregation-Induced Emission: Fundamentals, pp. 323-336. , (Edited by, Z. Tang, A. Qin, West Sussex, John Wiley & Sons Ltd
  • Lucenti, E., Forni, A., Botta, C., Carlucci, L., Giannini, C., Marinotto, D., Previtali, A., Cariati, E., H-aggregates granting crystallization-induced emissive behavior and ultralong phosphorescence from a pure organic molecule (2017) J. Chem. Phys. Lett., 8, pp. 1894-1898
  • Yang, L., Wang, X., Zhang, G., Chen, X., Zhang, G., Jiang, J., Aggregation-induced intersystem crossing: A novel strategy for efficient molecular phosphorescence (2016) Nanoscale, 8, pp. 17422-17426
  • Hong, Y., Aggregation-induced emission-fluorophores and applications (2016) Methods Appl. Fluoresc., 4, p. 022003
  • Lopez, S.G., Crovetto, L., Alvarez-Pez, J.M., Talavera, E.M., San Román, E., Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose (2014) Photochem. Photobiol. Sci., 13, pp. 1311-1320
  • Booth, P.J., Crystall, B., Giorgi, L.B., Barber, J., Klug, D.R., Porter, G., Thermodynamic properties of D1/D2/cytochrome b-559 reaction centres investigated by time-resolved fluorescence measurements (1990) Biochim. Biophys. Acta, 1016, pp. 141-152
  • Filatov, M.A., Karuthedath, S., Polestshuk, P.M., Savoie, H., Flanagan, K.J., Sy, C., Sitte, E., Senge, M.O., Generation of triplet excited states via photoinduced electron transfer in meso-anthra-BODIPY: Fluorogenic response toward singlet oxygen in solution and in vitro (2017) J. Am. Chem. Soc., 139, pp. 6282-6285
  • Kim, Y., Zhou, N., Tohnai, H., Nakatsuji, M., Matsusaki, M., Fujitsuka, M.M., Majima, T., Aggregation-induced singlet oxygen generation: Functional fluorophore and anthrylphenylene dyad self-assemblies (2018) Chem. An Eur. J., 24, pp. 636-645
  • Williams, R.M., Chen, H.C., Nuzzo, D.D., Meskers, S.C.J., Janssen, R.A.J., Ultrafast charge and triplet state formation in diketopyrrolopyrrole low band gap polymer/fullerene blends: Influence of nanoscale morphology of organic photovoltaic materials on charge recombination to the triplet state (2017) J. Spectrosc., 2017, pp. 1-16
  • Rao, A., Chow, P.C.Y., Gélinas, S., Schlenker, C.W., Li, C.Z., Yip, H.L., Jen, A.K.Y., Friend, R.H., The role of spin in the kinetic control of recombination in organic photovoltaics (2013) Nature, 500, pp. 435-439
  • Rodríguez, H.B., San Román, E., Duarte, P., Ferreira Machado, I., Vieira Ferreira, L.F., Eosin Y triplet state as a probe of spatial heterogeneity in microcrystalline cellulose (2012) Photochem. Photobiol., 88, pp. 831-839
  • Duarte, P., Ferreira, D.P., Ferreira Machado, I., Vieira Ferreira, L.F., Rodríguez, H.B., San Román, E., Phloxine B as a probe for entrapment in microcrystalline cellulose (2012) Molecules, 17, pp. 1602-1616
  • Wilkinson, F., Leicester, P.A., Vieira Ferreira, L.F., Freire, V.M.M.R., Photochemistry on surfaces: Triplet-triplet energy transfer on microcrystalline cellulose studied by diffuse reflectance transient absorption and emission spectroscopy (1991) Photochem. Photobiol., 54, pp. 599-608
  • Mirenda, M., Lagorio, M.G., San Román, E., Photophysics on surfaces: Determination of absolute fluorescence quantum yields from reflectance spectra (2004) Langmuir, 20, pp. 3690-3697
  • Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, pp. 55-76. , Chapter. 3, Wiley Interscience, New York, NY
  • Tomasini, E.P., Braslavsky, S.E., San Román, E., Triplet quantum yields in light-scattering powder samples measured by Laser-Induced Optoacoustic Spectroscopy (LIOAS) (2012) Photochem. Photobiol. Sci., 11, pp. 1010-1017
  • Tomasini, E.P., San Román, E., Braslavsky, S.E., Validation of fluorescence quantum yields for light-scattering powdered samples by Laser-Induced Optoacoustic Spectroscopy (2009) Langmuir, 25, pp. 5861-5868
  • Kessler, R.W., Krabichler, G., Uhl, S., Oelkrug, D., Hagan, W.P., Hyslop, J., Wilkinson, F., Transient decay following pulse excitation of diffuse scattering samples (1983) Optica Acta, 8, pp. 1099-1111
  • Litman, Y., Voss, M.G., Rodríguez, H.B., San Román, E., Effect of concentration on the formation of rose bengal triplet state on microcrystalline cellulose: A combined laser-induced optoacoustic spectroscopy, diffuse reflectance flash photolysis and luminescence study (2014) J. Phys. Chem. A, 118, pp. 10531-10537
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc., Faraday Trans., 94, pp. 419-425
  • Rodríguez, H.B., Lagorio, M.G., San Román, E., Rose bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers (2004) Photochem. Photobiol. Sci., 3, pp. 674-680
  • Rodríguez, H.B., San Román, E., Effect of concentration on the photophysics of dyes in light scattering materials (2013) Photochem. Photobiol., 89, pp. 1273-1282
  • Zhang, X.-F., Zhang, J., Liu, L., Fluorescence Properties of Twenty Fluorescein derivatives: Lifetime, quantum yield, absorption and emission spectra (2014) J. Fluoresc., 24, pp. 819-826
  • Kasha, M., Rawls, H.R., Ashraf El-Bayoumi, M., The exciton model in molecular spectroscopy (1965) Pure Appl. Chem., 2, pp. 371-391
  • Kasha, M., Energy transfer mechanism and the molecular exciton model for molecular aggregates (1963) Radiat. Res., 20, pp. 55-71
  • Verhoeven, J.W., On the role of spin correlation in the formation, decay and detection of long-lived, intramolecular charge-transfer states (2006) J. Photochem. Photobiol., C, 7, pp. 40-60
  • Braslavsky, S.E., Glossary of terms used in photochemistry, 3rd edition (2007) Pure Appl. Chem., 79, pp. 293-465
  • Suppan, P., Vauthey, E., The energy balance of photoinduced electron transfer reactions (1989) J. Photochem. Photobiol., A, 49, pp. 239-248
  • Miller, J.R., Peeples, J.A., Schmitt, M.J., Closs, G.L., Long-distance fluorescence quenching by electron transfer in rigid solutions (1982) J. Am. Chem. Soc., 104, pp. 6488-6493
  • Miller, J.R., Calcaterra, L.T., Closs, G.L., Intramolecular long-distance electron transfer in radical anions. the effects of free energy and solvent on the reaction rates (1984) J. Am. Chem. Soc., 106, pp. 3047-3049
  • Osuka, A., Noya, G., Taniguchi, S., Okada, T., Nishimura, Y., Yamazaki, I., Mataga, N., Energy-gap dependence of photoinduced charge separation and subsequent charge recombination in 1,4-phenylene-bridged zinc-free-base hybrid porphyrins (2000) Chem. Eur. J., 6, pp. 33-46
  • DeGraziano, J.M., Liddell, P.A., Leggett, L., Moore, A.L., Moore, T.A., Gust, D., Free energy dependence of photoinduced charge separation rates in porphyrin dyads (1994) J. Phys. Chem., 98, pp. 1758-1761
  • Krishtalik, L.I., The medium reorganization energy for the charge transfer reactions in proteins (2011) Biochim. Biophys. Acta, 1807, pp. 1444-1456
  • Ohkubo, K., Imahori, H., Shao, J., Ou, Z., Kadish, K.M., Chen, Y., Zheng, G., Fukuzumi, S., Small reorganization energy of intramolecular electron transfer in fullerene-based dyads with short linkage (2002) J. Phys. Chem. A, 106, pp. 10991-10998
  • Marcus, R.A., Electron transfer reactions in chemistry. Theory and experiment (1993) Rev. Mod. Phys., 65, pp. 599-610
  • Warman, J.M., Smit, K.J., de Haas, M.P., Jonker, S.A., Paddon-Row, M.N., Oliver, A.M., Kroon, J., Verhoeven, J.W., Long-distance charge recombination within rigid molecular assemblies in nondipolar solvents (1991) J. Phys. Chem., 95, pp. 1979-1987
  • Tran-Thi, T.H., Lipskier, J.F., Maillard, P., Momenteau, M., Lopez-Castillo, J.-M., Jay-Gerin, J.-P., Effect of the exciton coupling on the optical and photophysical properties of face-to-face porphyrin dimer and trimer. A treatment including the solvent stabilization effect (1992) J. Phys. Chem., 96, pp. 1073-1082
  • Veldman, D., Chopin, S.M.A., Meskers, S.C.J., Groeneveld, M.M., Williams, R.M., Janssen, R.A.J., Triplet formation involving a polar transition state in a well-defined intramolecular perylenediimide dimeric aggregate (2008) J. Phys. Chem. A, 112, pp. 5846-5857
  • Thomas, A.K., Brown, H.A., Datko, B.D., Garcia-Galvez, J.A., Grey, J.K., Interchain charge-transfer states mediate triplet formation in purified conjugated polymer aggregates (2016) J. Phys. Chem. C, 120, pp. 23230-23238
  • Zhang, X.-F., Zhang, I., Liu, L., Photophysics of halogenated fluoresceins: Involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states (2010) Photochem. Photobiol., 86, pp. 492-498
  • Fleming, G.R., Knight, A.W.E., Morris, J.M., Morrison, R.J.S., Robinson, G.W., Picosecond fluorescence studies of xanthene dyes (1977) J. Am. Chem. Soc., 99, pp. 4306-4311
  • Malak, H., Investigating up-conversion fluorescence of Phloxine B (1999) IEEE Eng. Med. Biol., 99, pp. 37-91
  • Linden, S.M., Neckers, D.C., Bleaching studies of rose bengal onium salts (1988) J. Am. Chem. Soc., 110, pp. 1257-1260
  • Lee, S.H., Nam, D.H., Park, C.B., Screening xanthene dyes for visible light-driven nicotinamide adenine dinucleotide regeneration and photoenzymatic synthesis (2009) Adv. Synth. Catal., 351, pp. 2589-2594

Citas:

---------- APA ----------
Litman, Y.E., Rodríguez, H.B., Braslavsky, S.E. & San Román, E. (2018) . Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation. Photochemistry and Photobiology, 94(5), 865-874.
http://dx.doi.org/10.1111/php.12978
---------- CHICAGO ----------
Litman, Y.E., Rodríguez, H.B., Braslavsky, S.E., San Román, E. "Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation" . Photochemistry and Photobiology 94, no. 5 (2018) : 865-874.
http://dx.doi.org/10.1111/php.12978
---------- MLA ----------
Litman, Y.E., Rodríguez, H.B., Braslavsky, S.E., San Román, E. "Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation" . Photochemistry and Photobiology, vol. 94, no. 5, 2018, pp. 865-874.
http://dx.doi.org/10.1111/php.12978
---------- VANCOUVER ----------
Litman, Y.E., Rodríguez, H.B., Braslavsky, S.E., San Román, E. Photophysics of Xanthene Dyes at High Concentrations in Solid Environments: Charge Transfer Assisted Triplet Formation. Photochem. Photobiol. 2018;94(5):865-874.
http://dx.doi.org/10.1111/php.12978