Artículo

Lorenzo, C.D.; Sanchez-Lamas, M.; Antonietti, M.S.; Cerdán, P.D. "Emerging Hubs in Plant Light and Temperature Signaling" (2016) Photochemistry and Photobiology. 92(1):3-13
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Due to their nature as sessile organisms, plants must accurately sense their surroundings and then translate this information into efficient acclimation responses to maximize development. Light and temperature are two major stimuli that provide immediate cues regarding energy availability, daylength, proximity of other species and seasonal changes. Both cues are sensed by complex systems and the integration of these signals is of very high value to properly respond to environmental changes without being disguised by random changes. For instance a cold day has a different significance if it occurs during the illuminated phase of the day or during the night, or when days are shortening during the fall instead of a long-day in spring. Here, we summarize recent advances in the nature of signaling components that operate as connectors of light and temperature signaling, with emphasis on the emerging hubs. Despite the nature of the thermosensors is still in its infancy compared to an important body of knowledge about plant sensory photoreceptors, the interaction of both types of signaling will not only bring clues of how plants integrate environmental information, but also will help in leading research in the nature of the thermosensors themselves. Temperature and Light Perception integration. © 2015 The American Society of Photobiology.

Registro:

Documento: Artículo
Título:Emerging Hubs in Plant Light and Temperature Signaling
Autor:Lorenzo, C.D.; Sanchez-Lamas, M.; Antonietti, M.S.; Cerdán, P.D.
Filiación:Fundaciõn Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Año:2016
Volumen:92
Número:1
Página de inicio:3
Página de fin:13
DOI: http://dx.doi.org/10.1111/php.12535
Título revista:Photochemistry and Photobiology
Título revista abreviado:Photochem. Photobiol.
ISSN:00318655
CODEN:PHCBA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00318655_v92_n1_p3_Lorenzo

Referencias:

  • Gray, W.M., Ostin, A., Sandberg, G., Romano, C.P., Estelle, M., High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis (1998) Proc. Natl. Acad. Sci. U.S.A., 95, pp. 7197-7202
  • Lariguet, P., Dunand, C., Plant photoreceptors: Phylogenetic overview (2005) J. Mol. Evol., 61, pp. 559-569
  • Rockwell, N.C., Su, Y.S., Lagarias, J.C., Phytochrome structure and signaling mechanisms (2006) Annu. Rev. Plant Biol., 57, pp. 837-858
  • Christie, J.M., Blackwood, L., Petersen, J., Sullivan, S., Plant flavoprotein photoreceptors (2015) Plant Cell Physiol., 56, pp. 401-413
  • Hohm, T., Preuten, T., Fankhauser, C., Phototropism: Translating light into directional growth (2013) Am. J. Bot., 100, pp. 47-59
  • Ito, S., Song, Y.H., Imaizumi, T., LOV domain-containing F-box proteins: Light-dependent protein degradation modules in Arabidopsis (2012) Mol. Plant, 5, pp. 573-582
  • Rizzini, L., Favory, J.J., Cloix, C., Faggionato, D., O'Hara, A., Kaiserli, E., Baumeister, R., Ulm, R., Perception of UV-B by the Arabidopsis UVR8 protein (2011) Science, 332, pp. 103-106
  • Wu, D., Hu, Q., Yan, Z., Chen, W., Yan, C., Huang, X., Zhang, J., Shi, Y., Structural basis of ultraviolet-B perception by UVR8 (2012) Nature, 484, pp. 214-219
  • Withrow, R.B., Klein, W.H., Elstad, V., Action spectra of photomorphogenic induction and its photoinactivation (1957) Plant Physiol., 32, pp. 453-462
  • Knight, H., Knight, M.R., Imaging spatial and cellular characteristics of low temperature calcium signature after cold acclimation in Arabidopsis (2000) J. Exp. Bot., 51, pp. 1679-1686
  • Saidi, Y., Finka, A., Muriset, M., Bromberg, Z., Weiss, Y.G., Maathuis, F.J., Goloubinoff, P., The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane (2009) Plant Cell, 21, pp. 2829-2843
  • De Mendoza, D., Temperature sensing by membranes (2014) Annu. Rev. Microbiol., 68, pp. 101-116
  • Horvath, I., Glatz, A., Nakamoto, H., Mishkind, M.L., Munnik, T., Saidi, Y., Goloubinoff, P., Vigh, L., Heat shock response in photosynthetic organisms: Membrane and lipid connections (2012) Prog. Lipid Res., 51, pp. 208-220
  • Finka, A., Cuendet, A.F., Maathuis, F.J., Saidi, Y., Goloubinoff, P., Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance (2012) Plant Cell, 24, pp. 3333-3348
  • Finka, A., Goloubinoff, P., The CNGCb and CNGCd genes from Physcomitrella patens moss encode for thermosensory calcium channels responding to fluidity changes in the plasma membrane (2014) Cell Stress Chaperones., 19, pp. 83-90
  • Finka, A., Goloubinoff, P., Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis (2013) Cell Stress Chaperones., 18, pp. 591-605
  • Thomas, L., Marondedze, C., Ederli, L., Pasqualini, S., Gehring, C., Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana (2013) J. Proteomics., 83, pp. 47-59
  • Kumar, S.V., Lucyshyn, D., Jaeger, K.E., Alos, E., Alvey, E., Harberd, N.P., Wigge, P.A., Transcription factor PIF4 controls the thermosensory activation of flowering (2012) Nature, 484, pp. 242-245
  • Kumar, S.V., Wigge, P.A., H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis (2010) Cell, 140, pp. 136-147
  • Weber, C.M., Ramachandran, S., Henikoff, S., Nucleosomes are context-specific, H2A.Z-modulated barriers to RNA polymerase (2014) Mol. Cell, 53, pp. 819-830
  • Deal, R.B., Topp, C.N., McKinney, E.C., Meagher, R.B., Repression of flowering in Arabidopsis requires activation of FLOWERING LOCUS C expression by the histone variant H2A.Z (2007) Plant Cell, 19, pp. 74-83
  • Zilberman, D., Coleman-Derr, D., Ballinger, T., Henikoff, S., Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks (2008) Nature, 456, pp. 125-129
  • Ozturk, N., Selby, C.P., Annayev, Y., Zhong, D., Sancar, A., Reaction mechanism of Drosophila cryptochrome (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 516-521
  • Njimona, I., Yang, R., Lamparter, T., Temperature effects on bacterial phytochrome (2014) PLoS ONE, 9, p. e109794
  • Njimona, I., Lamparter, T., Temperature effects on Agrobacterium phytochrome Agp1 (2011) PLoS ONE, 6, p. e25977
  • Schafer, E., Schmidt, W., Temperature dependence of phytochrome dark reactions (1974) Planta, 116, pp. 257-266
  • Takaki, M., Zaia, V.M., Effect of light and temperature on the germination of lettuce seeds (1984) Planta, 160, pp. 190-192
  • Sondheimer, E., Tzou, D.S., Galson, E.C., Abscisic acid levels and seed dormancy (1968) Plant Physiol., 43, pp. 1443-1447
  • Frankland, B., Effect of gibberellic acid, kinetin and other substances on seed dormancy (1961) Nature, 192, pp. 678-679
  • Holdsworth, M.J., Bentsink, L., Soppe, W.J., Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination (2008) New Phytol., 179, pp. 33-54
  • Strasser, B., Sanchez-Lamas, M., Yanovsky, M.J., Casal, J.J., Cerdan, P.D., Arabidopsis thaliana life without phytochromes (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 4776-4781
  • Heschel, M.S., Selby, J., Butler, C., Whitelam, G.C., Sharrock, R.A., Donohue, K., A new role for phytochromes in temperature-dependent germination (2007) New Phytol., 174, pp. 735-741
  • Donohue, K., Heschel, M.S., Butler, C.M., Barua, D., Sharrock, R.A., Whitelam, G.C., Chiang, G.C., Diversification of phytochrome contributions to germination as a function of seed-maturation environment (2008) New Phytol., 177, pp. 367-379
  • Chen, M., MacGregor, D.R., Dave, A., Florance, H., Moore, K., Paszkiewicz, K., Smirnoff, N., Penfield, S., Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year (2014) Proc. Natl. Acad. Sci. U.S.A., 111, pp. 18787-18792
  • MacGregor, D.R., Kendall, S.L., Florance, H., Fedi, F., Moore, K., Paszkiewicz, K., Smirnoff, N., Penfield, S., Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism (2015) New Phytol., 205, pp. 642-652
  • Cerdan, P.D., Chory, J., Regulation of flowering time by light quality (2003) Nature, 423, pp. 881-885
  • Inigo, S., Alvarez, M.J., Strasser, B., Califano, A., Cerdan, P.D., PFT1, the MED25 subunit of the plant Mediator complex, promotes flowering through CONSTANS dependent and independent mechanisms in Arabidopsis (2012) Plant J., 69, pp. 601-612
  • Wollenberg, A.C., Strasser, B., Cerdan, P.D., Amasino, R.M., Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering (2008) Plant Physiol., 148, pp. 1681-1694
  • Ni, M., Tepperman, J.M., Quail, P.H., PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein (1998) Cell, 95, pp. 657-667
  • Leivar, P., Quail, P.H., PIFs: Pivotal components in a cellular signaling hub (2011) Trends Plant Sci., 16, pp. 19-28
  • Oh, E., Kim, J., Park, E., Kim, J.I., Kang, C., Choi, G., PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana (2004) Plant Cell, 16, pp. 3045-3058
  • Oh, E., Yamaguchi, S., Kamiya, Y., Bae, G., Chung, W.I., Choi, G., Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis (2006) Plant J., 47, pp. 124-139
  • Oh, E., Yamaguchi, S., Hu, J., Yusuke, J., Jung, B., Paik, I., Lee, H.S., Choi, G., PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds (2007) Plant Cell, 19, pp. 1192-1208
  • Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., Choi, G., Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis (2009) Plant Cell, 21, pp. 403-419
  • Kim, D.H., Yamaguchi, S., Lim, S., Oh, E., Park, J., Hanada, A., Kamiya, Y., Choi, G., SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5 (2008) Plant Cell, 20, pp. 1260-1277
  • Sun, T.P., Gibberellin metabolism, perception and signaling pathways in Arabidopsis (2008) Arabidopsis Book, 6, p. e0103
  • Park, J., Lee, N., Kim, W., Lim, S., Choi, G., ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds (2011) Plant Cell, 23, pp. 1404-1415
  • Toh, S., Imamura, A., Watanabe, A., Nakabayashi, K., Okamoto, M., Jikumaru, Y., Hanada, A., Kawakami, N., High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds (2008) Plant Physiol., 146, pp. 1368-1385
  • Lim, S., Park, J., Lee, N., Jeong, J., Toh, S., Watanabe, A., Kim, J., Choi, G., ABA-insensitive3, ABA-insensitive5, and DELLAs Interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis (2013) Plant Cell, 25, pp. 4863-4878
  • Yamaguchi, S., Smith, M.W., Brown, R.G., Kamiya, Y., Sun, T., Phytochrome regulation and differential expression of gibberellin 3beta-hydroxylase genes in germinating Arabidopsis seeds (1998) Plant Cell, 10, pp. 2115-2126
  • Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., Yamaguchi, S., Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds (2004) Plant Cell, 16, pp. 367-378
  • Penfield, S., Josse, E.M., Kannangara, R., Gilday, A.D., Halliday, K.J., Graham, I.A., Cold and light control seed germination through the bHLH transcription factor SPATULA (2005) Curr. Biol., 15, pp. 1998-2006
  • Casal, J.J., Photoreceptor signaling networks in plant responses to shade (2013) Annu. Rev. Plant Biol., 64, pp. 403-427
  • Leivar, P., Monte, E., Oka, Y., Liu, T., Carle, C., Castillon, A., Huq, E., Quail, P.H., Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness (2008) Curr. Biol., 18, pp. 1815-1823
  • Song, Y., Yang, C., Gao, S., Zhang, W., Li, L., Kuai, B., Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4, and 5 (2014) Mol. Plant, 7, pp. 1776-1787
  • Park, E., Park, J., Kim, J., Nagatani, A., Lagarias, J.C., Choi, G., Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters (2012) Plant J., 72, pp. 537-546
  • Al-Sady, B., Ni, W., Kircher, S., Schafer, E., Quail, P.H., Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation (2006) Mol. Cell, 23, pp. 439-446
  • Ni, W., Xu, S.L., Chalkley, R.J., Pham, T.N., Guan, S., Maltby, D.A., Burlingame, A.L., Quail, P.H., Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis (2013) Plant Cell, 25, pp. 2679-2698
  • Ni, W., Xu, S.L., Tepperman, J.M., Stanley, D.J., Maltby, D.A., Gross, J.D., Burlingame, A.L., Quail, P.H., A mutually assured destruction mechanism attenuates light signaling in Arabidopsis (2014) Science, 344, pp. 1160-1164
  • Lorrain, S., Allen, T., Duek, P.D., Whitelam, G.C., Fankhauser, C., Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors (2008) Plant J., 53, pp. 312-323
  • Jang, I.C., Henriques, R., Seo, H.S., Nagatani, A., Chua, N.H., Arabidopsis PHYTOCHROME INTERACTING FACTOR proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus (2010) Plant Cell, 22, pp. 2370-2383
  • Leivar, P., Monte, E., PIFs: Systems integrators in plant development (2014) Plant Cell, 26, pp. 56-78
  • Keller, M.M., Jaillais, Y., Pedmale, U.V., Moreno, J.E., Chory, J., Ballare, C.L., Cryptochrome 1 and phytochrome B control shade-avoidance responses in Arabidopsis via partially independent hormonal cascades (2011) Plant J., 67, pp. 195-207
  • Keuskamp, D.H., Pollmann, S., Voesenek, L.A., Peeters, A.J., Pierik, R., Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 22740-22744
  • Keuskamp, D.H., Sasidharan, R., Vos, I., Peeters, A.J., Voesenek, L.A., Pierik, R., Blue-light-mediated shade avoidance requires combined auxin and brassinosteroid action in Arabidopsis seedlings (2011) Plant J., 67, pp. 208-217
  • Tao, Y., Ferrer, J.L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Chory, J., Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants (2008) Cell, 133, pp. 164-176
  • Hornitschek, P., Kohnen, M.V., Lorrain, S., Rougemont, J., Ljung, K., Lopez-Vidriero, I., Franco-Zorrilla, J.M., Fankhauser, C., Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling (2012) Plant J., 71, pp. 699-711
  • Hornitschek, P., Lorrain, S., Zoete, V., Michielin, O., Fankhauser, C., Inhibition of the shade avoidance response by formation of non-DNA binding bHLH heterodimers (2009) EMBO J., 28, pp. 3893-3902
  • Li, L., Ljung, K., Breton, G., Schmitz, R.J., Pruneda-Paz, J., Cowing-Zitron, C., Cole, B.J., Chory, J., Linking photoreceptor excitation to changes in plant architecture (2012) Genes Dev., 26, pp. 785-790
  • Balasubramanian, S., Sureshkumar, S., Lempe, J., Weigel, D., Potent induction of Arabidopsis thaliana flowering by elevated growth temperature (2006) PLoS Genet., 2, p. e106
  • Stavang, J.A., Gallego-Bartolome, J., Gomez, M.D., Yoshida, S., Asami, T., Olsen, J.E., Garcia-Martinez, J.L., Blazquez, M.A., Hormonal regulation of temperature-induced growth in Arabidopsis (2009) Plant J., 60, pp. 589-601
  • Koini, M.A., Alvey, L., Allen, T., Tilley, C.A., Harberd, N.P., Whitelam, G.C., Franklin, K.A., High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4 (2009) Curr. Biol., 19, pp. 408-413
  • Franklin, K.A., Lee, S.H., Patel, D., Kumar, S.V., Spartz, A.K., Gu, C., Ye, S., Gray, W.M., Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 20231-20235
  • Sun, J., Qi, L., Li, Y., Chu, J., Li, C., PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating arabidopsis hypocotyl growth (2012) PLoS Genet., 8, p. e1002594
  • Nozue, K., Covington, M.F., Duek, P.D., Lorrain, S., Fankhauser, C., Harmer, S.L., Maloof, J.N., Rhythmic growth explained by coincidence between internal and external cues (2007) Nature, 448, pp. 358-361
  • Nomoto, Y., Kubozono, S., Miyachi, M., Yamashino, T., Nakamichi, N., Mizuno, T., A circadian clock- and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana (2012) Plant Cell Physiol., 53, pp. 1965-1973
  • Nomoto, Y., Kubozono, S., Yamashino, T., Nakamichi, N., Mizuno, T., Circadian clock- and PIF4-controlled plant growth: A coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana (2012) Plant Cell Physiol., 53, pp. 1950-1964
  • Delker, C., Sonntag, L., James, G.V., Janitza, P., Ibanez, C., Ziermann, H., Peterson, T., Quint, M., The DET1-COP1-HY5 pathway constitutes a multipurpose signaling module regulating plant photomorphogenesis and thermomorphogenesis (2014) Cell Rep., 9, pp. 1983-1989
  • Foreman, J., Johansson, H., Hornitschek, P., Josse, E.M., Fankhauser, C., Halliday, K.J., Light receptor action is critical for maintaining plant biomass at warm ambient temperatures (2011) Plant J., 65, pp. 441-452
  • Hicks, K.A., Albertson, T.M., Wagner, D.R., EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis (2001) Plant Cell, 13, pp. 1281-1292
  • Liu, X.L., Covington, M.F., Fankhauser, C., Chory, J., Wagner, D.R., ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway (2001) Plant Cell, 13, pp. 1293-1304
  • Yu, J.W., Rubio, V., Lee, N.Y., Bai, S., Lee, S.Y., Kim, S.S., Liu, L., Deng, X.W., COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability (2008) Mol. Cell, 32, pp. 617-630
  • Nusinow, D.A., Helfer, A., Hamilton, E.E., King, J.J., Imaizumi, T., Schultz, T.F., Farre, E.M., Kay, S.A., The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth (2011) Nature, 475, pp. 398-402
  • Strasser, B., Alvarez, M.J., Califano, A., Cerdan, P.D., A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature (2009) Plant J., 58, pp. 629-640
  • Thines, B., Harmon, F.G., Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock (2010) Proc. Natl. Acad. Sci. U.S.A., 107, pp. 3257-3262
  • Box, M.S., Huang, B.E., Domijan, M., Jaeger, K.E., Khattak, A.K., Yoo, S.J., Sedivy, E.L., Wigge, P.A., ELF3 controls thermoresponsive growth in Arabidopsis (2015) Curr. Biol., 25, pp. 194-199
  • Mizuno, T., Nomoto, Y., Oka, H., Kitayama, M., Takeuchi, A., Tsubouchi, M., Yamashino, T., Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana (2014) Plant Cell Physiol., 55, pp. 958-976
  • Seaton, D.D., Smith, R.W., Song, Y.H., MacGregor, D.R., Stewart, K., Steel, G., Foreman, J., Halliday, K.J., Linked circadian outputs control elongation growth and flowering in response to photoperiod and temperature (2015) Mol. Syst. Biol., 11, p. 776
  • Nieto, C., Lopez-Salmeron, V., Daviere, J.M., Prat, S., ELF3-PIF4 interaction regulates plant growth independently of the evening complex (2015) Curr. Biol., 25, pp. 187-193
  • Singh, A., Ram, H., Abbas, N., Chattopadhyay, S., Molecular interactions of GBF1 with HY5 and HYH proteins during light-mediated seedling development in Arabidopsis thaliana (2012) J. Biol. Chem., 287, pp. 25995-26009
  • Jang, I.C., Henriques, R., Chua, N.H., Three transcription factors, HFR1, LAF1 and HY5, regulate largely independent signaling pathways downstream of phytochrome A (2013) Plant Cell Physiol., 54, pp. 907-916
  • Saijo, Y., Sullivan, J.A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Deng, X.W., The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity (2003) Genes Dev., 17, pp. 2642-2647
  • Hardtke, C.S., Gohda, K., Osterlund, M.T., Oyama, T., Okada, K., Deng, X.W., HY5 stability and activity in arabidopsis is regulated by phosphorylation in its COP1 binding domain (2000) EMBO J., 19, pp. 4997-5006
  • Osterlund, M.T., Hardtke, C.S., Wei, N., Deng, X.W., Targeted destabilization of HY5 during light-regulated development of Arabidopsis (2000) Nature, 405, pp. 462-466
  • Catala, R., Medina, J., Salinas, J., Integration of low temperature and light signaling during cold acclimation response in Arabidopsis (2011) Proc. Natl. Acad. Sci. U.S.A., 108, pp. 16475-16480
  • Toledo-Ortiz, G., Johansson, H., Lee, K.P., Bou-Torrent, J., Stewart, K., Steel, G., Rodriguez-Concepcion, M., Halliday, K.J., The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription (2014) PLoS Genet., 10, p. e1004416
  • Yanovsky, M.J., Kay, S.A., Molecular basis of seasonal time measurement in Arabidopsis (2002) Nature, 419, pp. 308-312
  • Helliwell, C.A., Anderssen, R.S., Robertson, M., Finnegan, E.J., How is FLC repression initiated by cold? (2015) Trends Plant Sci., 20, pp. 76-82
  • Ream, T.S., Woods, D.P., Amasino, R.M., The molecular basis of vernalization in different plant groups (2012) Cold Spring Harb. Symp. Quant. Biol., 77, pp. 105-115
  • Blazquez, M.A., Ahn, J.H., Weigel, D., A thermosensory pathway controlling flowering time in Arabidopsis thaliana (2003) Nat. Genet., 33, pp. 168-171
  • Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Coupland, G., FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis (2007) Science, 316, pp. 1030-1033
  • Jaeger, K.E., Wigge, P.A., FT protein acts as a long-range signal in Arabidopsis (2007) Curr. Biol., 17, pp. 1050-1054
  • Lin, M.K., Belanger, H., Lee, Y.J., Varkonyi-Gasic, E., Taoka, K., Miura, E., Xoconostle-Cazares, B., Lucas, W.J., FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits (2007) Plant Cell, 19, pp. 1488-1506
  • Mathieu, J., Warthmann, N., Kuttner, F., Schmid, M., Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis (2007) Curr. Biol., 17, pp. 1055-1060
  • Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., Shimamoto, K., Hd3a protein is a mobile flowering signal in rice (2007) Science, 316, pp. 1033-1036
  • Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., Ahn, J.H., Role of SVP in the control of flowering time by ambient temperature in Arabidopsis (2007) Genes Dev., 21, pp. 397-402
  • Suarez-Lopez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., Coupland, G., CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis (2001) Nature, 410, pp. 1116-1120
  • Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., Coupland, G., Photoreceptor regulation of CONSTANS protein in photoperiodic flowering (2004) Science, 303, pp. 1003-1006
  • Kim, W., Park, T.I., Yoo, S.J., Jun, A.R., Ahn, J.H., Generation and analysis of a complete mutant set for the Arabidopsis FT/TFL1 family shows specific effects on thermo-sensitive flowering regulation (2013) J. Exp. Bot., 64, pp. 1715-1729
  • Wickland, D.P., Hanzawa, Y., The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: Functional evolution and molecular mechanisms (2015) Mol. Plant, 8, pp. 983-997
  • Ratcliffe, O.J., Amaya, I., Vincent, C.A., Rothstein, S., Carpenter, R., Coen, E.S., Bradley, D.J., A common mechanism controls the life cycle and architecture of plants (1998) Development, 125, pp. 1609-1615
  • Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., Araki, T., TWIN SISTER of FT (TSF) acts as a floral pathway integrator redundantly with FT (2005) Plant Cell Physiol., 46, pp. 1175-1189
  • Hanano, S., Goto, K., Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression (2011) Plant Cell, 23, pp. 3172-3184
  • Buchovsky, A.S., Strasser, B., Cerdan, P.D., Casal, J.J., Suppression of pleiotropic effects of functional cryptochrome genes by Terminal Flower 1 (2008) Genetics, 180, pp. 1467-1474
  • Rantanen, M., Kurokura, T., Jiang, P., Mouhu, K., Hytonen, T., Strawberry homologue of TERMINAL FLOWER1 integrates photoperiod and temperature signals to inhibit flowering (2015) Plant J., 82, pp. 163-173
  • Cho, H.J., Kim, J.J., Lee, J.H., Kim, W., Jung, J.H., Park, C.M., Ahn, J.H., SHORT VEGETATIVE PHASE (SVP) protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis (2012) FEBS Lett., 586, pp. 2332-2337
  • Hwan Lee, J., Joon Kim, J., Ahn, J.H., Role of SEPALLATA3 (SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering (2012) Plant Signal. Behav., 7, pp. 1151-1154
  • Kim, J.J., Lee, J.H., Kim, W., Jung, H.S., Huijser, P., Ahn, J.H., The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis (2012) Plant Physiol., 159, pp. 461-478
  • Lee, C.M., Thomashow, M.F., Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana (2012) Proc. Natl. Acad. Sci. U.S.A., 109, pp. 15054-15059
  • Lee, H., Yoo, S.J., Lee, J.H., Kim, W., Yoo, S.K., Fitzgerald, H., Carrington, J.C., Ahn, J.H., Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis (2010) Nucleic Acids Res., 38, pp. 3081-3093
  • Iglesias, F.M., Bruera, N.A., Dergan-Dylon, S., Marino-Buslje, C., Lorenzi, H., Mateos, J.L., Turck, F., Cerdan, P.D., The arabidopsis DNA polymerase delta has a role in the deposition of transcriptionally active epigenetic marks, development and flowering (2015) PLoS Genet., 11, p. e1004975
  • Lopez-Vernaza, M., Yang, S., Muller, R., Thorpe, F., De Leau, E., Goodrich, J., Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF (2012) PLoS ONE, 7, p. e30715
  • Mathieu, J., Yant, L.J., Murdter, F., Kuttner, F., Schmid, M., Repression of flowering by the miR172 target SMZ (2009) PLoS Biol., 7, p. e1000148
  • Li, D., Liu, C., Shen, L., Wu, Y., Chen, H., Robertson, M., Helliwell, C.A., Yu, H., A repressor complex governs the integration of flowering signals in Arabidopsis (2008) Dev. Cell, 15, pp. 110-120
  • Lee, J.H., Ryu, H.S., Chung, K.S., Pose, D., Kim, S., Schmid, M., Ahn, J.H., Regulation of temperature-responsive flowering by MADS-box transcription factor repressors (2013) Science, 342, pp. 628-632
  • Pose, D., Verhage, L., Ott, F., Yant, L., Mathieu, J., Angenent, G.C., Immink, R.G., Schmid, M., Temperature-dependent regulation of flowering by antagonistic FLM variants (2013) Nature, 503, pp. 414-417
  • Scortecci, K., Michaels, S.D., Amasino, R.M., Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana (2003) Plant Mol. Biol., 52, pp. 915-922
  • Hwan Lee, J., Sook Chung, K., Kim, S.K., Ahn, J.H., Post-translational regulation of SHORT VEGETATIVE PHASE as a major mechanism for thermoregulation of flowering (2014) Plant Signal. Behav., 9, p. e28193
  • Hsu, P.Y., Harmer, S.L., Wheels within wheels: The plant circadian system (2014) Trends Plant Sci., 19, pp. 240-249
  • Fujiwara, S., Oda, A., Yoshida, R., Niinuma, K., Miyata, K., Tomozoe, Y., Tajima, T., Mizoguchi, T., Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis (2008) Plant Cell, 20, pp. 2960-2971
  • Yoshida, R., Fekih, R., Fujiwara, S., Oda, A., Miyata, K., Tomozoe, Y., Nakagawa, M., Mizoguchi, T., Possible role of early flowering 3 (ELF3) in clock-dependent floral regulation by short vegetative phase (SVP) in Arabidopsis thaliana (2009) New Phytol., 182, pp. 838-850
  • Proveniers, M.C., Van Zanten, M., High temperature acclimation through PIF4 signaling (2013) Trends Plant Sci., 18, pp. 59-64
  • Pfeiffer, A., Shi, H., Tepperman, J.M., Zhang, Y., Quail, P.H., Combinatorial complexity in a transcriptionally centered signaling hub in Arabidopsis (2014) Mol. Plant, 7, pp. 1598-1618
  • Shi, H., Zhong, S., Mo, X., Liu, N., Nezames, C.D., Deng, X.W., HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis (2013) Plant Cell, 25, pp. 3770-3784

Citas:

---------- APA ----------
Lorenzo, C.D., Sanchez-Lamas, M., Antonietti, M.S. & Cerdán, P.D. (2016) . Emerging Hubs in Plant Light and Temperature Signaling. Photochemistry and Photobiology, 92(1), 3-13.
http://dx.doi.org/10.1111/php.12535
---------- CHICAGO ----------
Lorenzo, C.D., Sanchez-Lamas, M., Antonietti, M.S., Cerdán, P.D. "Emerging Hubs in Plant Light and Temperature Signaling" . Photochemistry and Photobiology 92, no. 1 (2016) : 3-13.
http://dx.doi.org/10.1111/php.12535
---------- MLA ----------
Lorenzo, C.D., Sanchez-Lamas, M., Antonietti, M.S., Cerdán, P.D. "Emerging Hubs in Plant Light and Temperature Signaling" . Photochemistry and Photobiology, vol. 92, no. 1, 2016, pp. 3-13.
http://dx.doi.org/10.1111/php.12535
---------- VANCOUVER ----------
Lorenzo, C.D., Sanchez-Lamas, M., Antonietti, M.S., Cerdán, P.D. Emerging Hubs in Plant Light and Temperature Signaling. Photochem. Photobiol. 2016;92(1):3-13.
http://dx.doi.org/10.1111/php.12535