Artículo de Acceso Abierto. Puede ser descargado en su versión final
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Photoactive materials based on dye molecules incorporated into thin films or bulk solids are useful for applications as photosensitization, photocatalysis, solar cell sensitization and fluorescent labeling, among others. In most cases, high concentrations of dyes are desirable to maximize light absorption. Under these circumstances, the proximity of dye molecules leads to the formation of aggregates and statistical traps, which dissipate the excitation energy and lower the population of excited states. The search for enhancement of light collection, avoiding energy wasting requires accounting the photophysical parameters quantitatively, including the determination of quantum yields, complicated by the presence of light scattering when particulate materials are considered. In this work we summarize recent advances on the photophysics of dyes in light-scattering materials, with particular focus on the effect of dye concentration. We show how experimental reflectance, fluorescence and laser-induced optoacoustic spectroscopy data can be used together with theoretical models for the quantitative evaluation of inner filter effects, fluorescence and triplet formation quantum yields and energy transfer efficiencies. © 2013 The American Society of Photobiology.


Documento: Artículo
Título:Effect of concentration on the photophysics of dyes in light-scattering materials.
Autor:Rodríguez, H.B.; San Román, E.
Filiación:INIFTA, Facultad de Ciencias Exactas, Universidad Nacional la Plata, Argentina
INQUIMAE / DQIAyQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Página de inicio:1273
Página de fin:1282
Título revista:Photochemistry and Photobiology
Título revista abreviado:Photochem. Photobiol.


  • Ricciardi, L., Puoci, F., Cirillo, G., La Deda, M., A new member of the oxygen-photosensitizers family: A water-soluble polymer binding a platinum complex (2012) Dalton Trans., 41, pp. 10923-10925
  • Drozd, D., Szczubiałka, K., Nowakowska, M., Novel hybrid photosensitizers: Photoactive polymer-nanoclay (2010) J. Photochem. Photobiol. A: Chem., 215, pp. 223-228
  • Suzuki, M., Ohta, Y., Nagae, H., Ichinohe, T., Kimura, M., Hanabusa, K., Shirai, H., Wöhrle, D., Synthesis, characterization and application of a novel polymer solid photosensitizer (2000) Chem. Commun., 3, pp. 213-214
  • Lang, K., Bezdička, P., Bourdelande, J.L., Hernando, J., Jirka, I., Káfuňková, E., Kovanda, F., Wagnerová, D.M., Layered double hydroxides with intercalated porphyrins as photofunctional materials: Subtle structural changes modify singlet oxygen production (2007) Chem. Mater., 19, pp. 3822-3829
  • Hennig, A., Hatami, S., Spieles, M., Resch-Genger, U., Excitation energy migration and trapping on the surface of fluorescent poly(acrylic acid)-grafted polymer particles (2013) Photochem. Photobiol. Sci., 12, pp. 729-737
  • Hungerford, G., Benesch, J., Mano, J.F., Reis, R.L., Effect of the labelling ratio on the photophysics of fluorescein isothiocyanate (FITC) conjugated to bovine serum albumin (2007) Photochem. Photobiol. Sci., 6, pp. 152-158
  • Bae, B.-C., Na, K., Development of polymeric cargo for delivery of photosensitizer in photodynamic therapy (2012) Int. J. Photoenergy, 2012, p. 431975. , Art. ID
  • Park, W., Park, S.-J., Na, K., The controlled photoactivity of nanoparticles derived from ionic interactions between a water soluble polymeric photosensitizer and polysaccharide quencher (2011) Biomaterials, 32, pp. 8261-8270
  • Brühwiler, D., Calzaferri, G., Molecular sieves as host materials for supramolecular organization (2004) Microporous Mesoporous Mater., 72, pp. 1-23
  • Hardin, B.E., Snaith, H.J., McGehee, M.D., The renaissance of dye-sensitized solar cells (2012) Nat. Photonics, 6, pp. 162-169
  • Hardin, B.E., Hoke, E.T., Armstrong, P.B., Yum, J.-H., Comte, P., Torres, T., Fréchet, J.M.J., McGehee, M.D., Increased light harvesting in dye-sensitized solar cells with energy relay dyes (2009) Nat. Photonics, 3, pp. 406-411
  • Hoke, E.T., Hardin, B.E., McGehee, M.D., Modeling the efficiency of Förster resonant energy transfer from energy relay dyes in dye-sensitized solar cells (2010) Opt. Express, 18, pp. 3893-3904
  • Jonson, G.E., Fredriksson, H., Sellappan, R., Chakarov, D., Nanostructures for enhanced light absorption in solar energy devices (2011) Int. J. Photoenergy, 2011. , Art. ID 939807
  • Martini, M., Montagna, M., Ou, M., Tillement, O., Roux, S., Perriat, P., How to measure quantum yields in scattering media: Application to the quantum yield measurement of fluorescein molecules encapsulated in sub-100 nm silica particles (2009) J. Appl. Phys., 106, p. 94304
  • Gaigalas, A.K., Wang, L., Measurement of the fluorescence quantum yield using a spectrometer with an integrating sphere detector (2008) J. Res. Natl. Inst. Stand. Technol., 113, pp. 17-28
  • Gaigalas, A.K., He, H.-J., Wang, L., Measurement of absorption and scattering with an integrating sphere detector: Application to microalgae (2009) J. Res. Natl. Inst. Stand. Technol., 114, pp. 69-81
  • Botehlo Do Rego, A.M., Vieira Ferreira, L.F., Photonic and electronic spectroscopies for the characterization of organic surfaces and organic molecules adsorbed on surfaces (2001) Handbook of Surfaces and Interfaces of Materials, 2, pp. 275-313. , Ch. 7 (Edited by H. S. Nalga), Acad. Press, San Diego
  • Demas, J.N., Crosby, G.A., The measurement of photoluminescence quantum yields. A review (1971) J. Phys. Chem., 75, pp. 991-1024
  • Braslavsky, S.E., Glossary of terms used in photochemistry, 3rd edn. (IUPAC Recommendations 2006) (2007) Pure Appl. Chem., 79, pp. 293-465
  • Valeur, B., (2001) Molecular Fluorescence: Principles and Applications, , Wiley-VCH Verlag GmbH, Weinheim
  • Vieira Ferreira, L.F., Costa, S.M.B., Pereira, E.J., Fluorescence quantum yield evaluation of strongly absorbing dye solutions as a function of the excitation wavelength (1991) J. Photochem. Photobiol. A, 55, pp. 361-376
  • Birks, J.B., Fluorescence quantum yield measurements (1976) J. Res. Natl. Bureau Standards A: Phys. Chem., 80 A, pp. 389-399
  • Wrighton, M.S., Ginley, D.S., Morse, D.L., A technique for the determination of absolute emission quantum yields of powdered samples (1974) J. Phys. Chem., 78, pp. 2229-2233
  • Liu, Y.S., De Mayo, P., Ware, W.R., Photophysics of polycyclic aromatic hydrocarbons adsorbed on silica gel surfaces. 3. Fluorescence quantum yields and radiative decay rate constants derived from lifetime distributions (1993) J. Phys. Chem., 97, pp. 5995-6001
  • Wendlandt, W.W., Hecht, H.G., (1966) Reflectance Spectroscopy, pp. 55-76. , Ch. 3, Wiley Interscience, New York
  • De Mello, J.C., Wittmann, H.F., Friend, R.H., An improved experimental determination of external photoluminescence quantum efficiency (1997) Adv. Mat., 3, pp. 230-232
  • Mirenda, M., Lagorio, M.G., San Román, E., Photophysics on surfaces: Determination of absolute fluorescence quantum yields from reflectance spectra (2004) Langmuir, 20, pp. 3690-3697
  • Vieira Ferreira, L.F., Branco, T.J.F., Botelho Do Rego, A.M., Luminescence quantum yield determination for molecules adsorbed onto solid powdered particles (2004) Chem. Phys. Chem., 5, pp. 1848-1854
  • Plant, A.L., Mechanism of concentration quenching of a xanthene dye encapsulated in phospholipid vesicles (1986) Photochem. Photobiol., 44, pp. 453-459
  • Chen, R.F., Knutson, J.R., Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: Energy transfer to nonfluorescent dimers (1988) Anal. Biochem., 172, pp. 61-77
  • Razumov, V.F., Ivanchenko, A.G., Concentration fluorescence quenching of cyanine dyes in micellar solutions and microemulsions (1995) Opt. Spectrosc., 79, pp. 568-573
  • Martini, M., Perriat, P., Montagna, M., Pansu, R., Julien, C., Tillement, O., Roux, S., How gold particles suppress concentration quenching of fluorophores encapsulated in silica beads (2009) J. Phys. Chem. C, 113, pp. 17669-17677
  • Konan, Y.N., Gurny, R., Allémann, E., State of the art in the delivery of photosensitizers for photodynamic therapy (2002) J. Photochem. Photobiol. B, 66, pp. 89-106
  • Bechet, D., Couleaud, P., Frochot, C., Viriot, M.-L., Guillemin, F., Barberi-Heyob, M., Nanoparticles as vehicles for delivery of photodynamic therapy agents (2008) Trends Biotechnol., 26, pp. 612-621
  • Chen, W., Nanoparticle fluorescence based technology for biological applications (2008) J. Nanosci. Nanotechnol., 8, pp. 1019-1051
  • Martínez Martínez, V., Lõpez Arbeloa, F., Bañuelos Prieto, J., Lõpez Arbeloa, I., Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 Fluorescence spectroscopy (2005) J. Phys. Chem. B, 109, pp. 7443-7450
  • Deshpande, A.V., Namdas, E.B., Correlation between lasing and photophysical performance of dyes in polymethylmethacrylate (2000) J. Lumin., 91, pp. 25-31
  • Bojarski, P., Concentration quenching and depolarization of rhodamine 6G in the presence of fluorescent dimers in polyvinyl alcohol films (1997) Chem. Phys. Lett., 278, pp. 225-232
  • Anfinrud, P.A., Causgrove, T.P., Struve, W.S., Picosecond pump-probe experiments on surface-adsorbed dyes: Ground-state recovery of Rhodamine 640 on zinc oxide and fused silica (1986) J. Phys. Chem., 90, pp. 5887-5891
  • Tamai, N., Yamazaki, T., Yamazaki, I., Excitation energy relaxation of rhodamine B in Langmuir-Blodgett monolayer films: Picosecond time-resolved fluorescence studies (1988) Chem. Phys. Lett., 147, pp. 25-29
  • Vuorimaa, E., Ikonen, M., Lemmetyinen, H., Photophysics of rhodamine dimers in Langmuir-Blodgett films (1994) Chem. Phys., 188, pp. 289-302
  • Pevenage, D., Van Der Auweraer, M., De Schryver, F.C., Influence of the molecular structure on the lateral distribution of xanthene dyes in Langmuir-Blodgett films (1999) Langmuir, 15, pp. 8465-8473
  • Ballet, P., Van Der Auweraer, M., De Schryver, F.C., Lemmetyinen, H., Vuorimaa, E., Global analysis of the fluorescence decays of N,N′-dioctadecyl rhodamine B in Langmuir-Blodgett films of diacylphosphatidic acids (1996) J. Phys. Chem., 100, pp. 13701-13715
  • Birks, J.B., (1970) Photophysics of Aromatic Molecules, , Wiley-Interscience, London
  • Demchenko, A.P., The red-edge effects: 30 years of exploration (2002) Luminescence, 17, pp. 19-42
  • Oelkrug, D., Kortüm, G., Zur Berechnung der Lumineszenzreabsorption by pulverförmigen Substanzen (1968) Z. Physik. Chemie N. F., 58, pp. 181-188
  • Wilkinson, F., Kelly, G.P., Diffuse reflectance flash photolysis (1989) Handbook of Organic Photochemistry, 1, pp. 293-314. , (Edited by J. C. Scaiano), CRC Press, Boca Raton
  • Lagorio, M.G., Dicelio, L.E., Litter, M.I., San Román, E., Modeling of fluorescence quantum yields of supported dyes. Aluminum carboxyphthalocyanine on cellulose (1998) J. Chem. Soc. Faraday Trans., 94, pp. 419-425
  • Rodríguez, H.B., Lagorio, M.G., San Román, E., Rose bengal adsorbed on microgranular cellulose: Evidence on fluorescent dimers (2004) Photochem. Photobiol. Sci., 3, pp. 674-680
  • Beddard, G.S., Porter, G., Concentration quenching in chlorophyll (1976) Nature, 260, pp. 366-367
  • Boulu, L.G., Patterson, L.K., Chauvet, J.P., Kozak, J.J., Theoretical investigation of fluorescence concentration quenching in two-dimensional disordered systems. Application to chlorophyll a in monolayers of dioleylphosphatidylcholine (1987) J. Chem. Phys., 86, pp. 503-507
  • Knoester, J., Van Himbergen, J.E., On the theory of concentration self-quenching by statistical traps (1987) J. Chem. Phys., 86, pp. 3571-3576
  • Dahim, M., Mizuno, N.K., Li, X.-M., Momsen, W.E., Momsen, M.M., Brockman, H.L., Physical and photophysical characterization of a BODIPY phosphatidylcholine as a membrane probe (2002) Biophys. J., 83, pp. 1511-1524
  • Juzeliunas, G., Andrews, D.L., Unified theory of radiative and radiationless energy transfer (1999) Resonance Energy Transfer, pp. 65-107. , (Edited by D. L. Andrews and A. A. Demidov), Wiley, Chichester
  • Scholes, G.D., Long-range resonance energy transfer in molecular systems (2003) Annu. Rev. Phys. Chem., 54, pp. 57-87
  • Kasha, M., Energy transfer mechanisms and the molecular exciton model for molecular aggregates (1963) Radiat. Res., 20, pp. 55-71
  • Kasha, M., Rawls, H.R., Ashraf El-Bayoumi, M., The exciton model in molecular spectroscopy (1965) Pure Appl. Chem., 11, pp. 371-391
  • Förster, Th., Transfer mechanisms of electronic excitation (1959) Discuss. Faraday Soc., 27, pp. 7-17
  • Braslavsky, S.E., Fron, E., Rodríguez, H.B., San Román, E., Scholes, G.D., Schweitzer, G., Valeur, B., Wirz, J., Pitfalls and limitations in the practical use of Förster's theory of resonance energy transfer (2008) Photochem. Photobiol. Sci., 7, pp. 1444-1448
  • Förster, Th., Experimentelle und Theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie (1949) Z. Naturforsch., 4 A, pp. 321-327
  • Fung, B.K.-K., Stryer, L., Surface density determination in membranes by fluorescence energy transfer (1978) Biochemistry, 17, pp. 5241-5248
  • Itoh, K., Chiyokawa, Y., Nakao, M., Honda, K., Fluorescence quenching processes of Rhodamine B on oxide semiconductors and light-harvesting action of its dimers (1984) J. Am. Chem. Soc., 106, pp. 1620-1627
  • Huber, D.L., Fluorescence in the presence of traps (1979) Phys. Rev. B, 20, pp. 2307-2314
  • Gouchanour, C.R., Anderson, H.C., Fayer, M.D., Electronic excited state transport in solution (1979) J. Chem. Phys., 70, pp. 4254-4271
  • Loring, R.F., Anderson, H.C., Fayer, M.D., Electronic excited state transport and trapping in solution (1982) J. Chem. Phys., 76, pp. 2015-2027
  • Kulak, L., Bojarski, C., Forward and reverse electronic energy transport and trapping in solution. I. Theory (1995) Chem. Phys., 191, pp. 43-66
  • Engström, S., Lindberg, M., Johansson, L.B.-Å., Monte Carlo simulations of electronic energy transfer in three-dimensional systems: A comparison with analytical theories (1988) J. Chem. Phys., 89, pp. 204-213
  • Kulak, L., Bojarski, C., Forward and reverse electronic energy transport and trapping in solution. II. Numerical results and Monte Carlo simulations (1995) Chem. Phys., 191, pp. 67-86
  • Carlsson, C., Larsson, A., Björkman, M., Jonsson, M., Albinsson, B., Experimental and simulated fluorescence depolarization due to energy transfer as tools to study DNA-dye interactions (1997) Biopolymers, 41, pp. 481-494
  • Lõpez, S.G., Worringer, G., Rodríguez, H.B., San Román, E., Trapping of Rhodamine 6G excitation energy on cellulose microparticles (2010) Phys. Chem. Chem. Phys., 12, pp. 2246-2253
  • Rodríguez, H.B., San Román, E., Excitation energy transfer and trapping in dye-loaded solid particles (2008) Ann. N. Y. Acad. Sci., 1130, pp. 247-252
  • Rodríguez, H.B., Iriel, A., San Román, E., Energy transfer among dyes on particulate solids (2006) Photochem. Photobiol., 82, pp. 200-207
  • Tam, A.C., Applications of photoacoustic sensing techniques (1986) Rev. Mod. Phys., 58, pp. 381-431
  • Peters, K.S., Time-resolved photoacoustic calorimetry (1986) Pure Appl. Chem., 58, pp. 1263-1266
  • Braslavsky, S.E., Heibel, G.E., Time-resolved photothermal and photoacoustic methods applied to photoinduced processes in solution (1992) Chem. Rev., 92, pp. 1381-1410
  • Gensch, T., Viappiani, C., Braslavsky, S.E., Laser-induced time-resolved optoacoustic spectroscopy in solution (1999) Encyclopedia of Spectroscopy and Spectrometry, pp. 1124-1132. , (Edited by J. C. Lindon, G. E. Tranter and J. L. Holmes), Academic Press, London
  • Tomasini, E.P., San Román, E., Braslavsky, S.E., Validation of fluorescence quantum yields for light-scattering powdered samples by laser-induced optoacoustic spectroscopy (2009) Langmuir, 25, pp. 5861-5868
  • Tomasini, E.P., Braslavsky, S.E., San Román, E., Triplet quantum yields in light-scattering powder samples measured by laser-induced optoacoustic spectroscopy (LIOAS) (2012) Photochem. Photobiol. Sci., 11, pp. 1010-1017
  • Iriel, A., (2006) Fotofísica de Colorantes Inmovilizados Sobre Superficies, , Ph.D thesis, University of Buenos Aires
  • Lagorio, M.G., San Román, E., Zeug, A., Zimmermann, J., Röder, B., Photophysics on surfaces: Absorption and luminescence properties of pheophorbide - A on cellulose (2001) Phys. Chem. Chem. Phys., 3, pp. 1524-1529
  • Iriel, A., Lagorio, M.G., Dicelio, L.E., San Román, E., Photophysics of supported dyes: Phthalocyanine on silanized silica (2002) Phys. Chem. Chem. Phys., 4, pp. 224-231
  • Amao, Y., Komori, T., Dye-sensitized solar cell using a TiO2 nanocrystalline film electrode modified by an aluminum phthalocyanine and myristic acid coadsorption layer (2003) Langmuir, 19, pp. 8872-8875
  • Rodríguez, H.B., (2009) Fotofísica de Colorantes Sobre Sõlidos Particulados: Interacciones Moleculares y Transferencia de Energía, , Ph.D thesis, University of Buenos Aires
  • Rodríguez, H.B., San Román, E., Energy transfer from chemically attached rhodamine 101 to adsorbed methylene blue on microcrystalline cellulose particles (2007) Photochem. Photobiol., 83, pp. 547-555
  • Tripathy, U., Bishta, P.B., Effect of donor-acceptor interaction strength on excitation energy migration and diffusion at high donor concentrations (2006) J. Chem. Phys., 125, p. 144502


---------- APA ----------
Rodríguez, H.B. & San Román, E. (2013) . Effect of concentration on the photophysics of dyes in light-scattering materials. Photochemistry and Photobiology, 89(6), 1273-1282.
---------- CHICAGO ----------
Rodríguez, H.B., San Román, E. "Effect of concentration on the photophysics of dyes in light-scattering materials." Photochemistry and Photobiology 89, no. 6 (2013) : 1273-1282.
---------- MLA ----------
Rodríguez, H.B., San Román, E. "Effect of concentration on the photophysics of dyes in light-scattering materials." Photochemistry and Photobiology, vol. 89, no. 6, 2013, pp. 1273-1282.
---------- VANCOUVER ----------
Rodríguez, H.B., San Román, E. Effect of concentration on the photophysics of dyes in light-scattering materials. Photochem. Photobiol. 2013;89(6):1273-1282.