Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The extent and type of hormones and active peptides secreted by the chromaffin cells of the adrenal medulla have to be adjusted to physiological requirements. The chromaffin cell secretory activity is controlled by the splanchnic nerve firing frequency, which goes from approximately 0.5 Hz in basal conditions to more than 15 Hz in stress. Thus, these neuroendocrine cells maintain a tonic release of catecholamines under resting conditions, massively discharge intravesicular transmitters in response to stress, or adequately respond to moderate stimuli. In order to adjust the secretory response to the stimulus, the adrenal chromaffin cells have an appropriate organization of Ca2+ channels, secretory granules pools, and sets of proteins dedicated to selectively control different steps of the secretion process, such as the traffic, docking, priming and fusion of the chromaffin granules. Among the molecules implicated in such events are the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, Ca2+ sensors like Munc13 and synaptotagmin-1, chaperon proteins such as Munc18, and the actomyosin complex. In the present review, we discuss how these different actors contribute to the extent and maintenance of the stimulus-dependent exocytosis in the adrenal chromaffin cells. © 2017, Springer-Verlag GmbH Germany.

Registro:

Documento: Artículo
Título:How does the stimulus define exocytosis in adrenal chromaffin cells?
Autor:Marengo, F.D.; Cárdenas, A.M.
Filiación:Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
Palabras clave:Catecholamines; Chromaffin cells; Exocytosis; Vesicle pools; Voltage-dependent Ca2+ channels; calcium channel; Munc13 protein; Munc18 protein; myosin adenosine triphosphatase; protein; SNARE protein; synaptotagmin I; unclassified drug; calcium channel; vesicular transport protein; adrenal chromaffin cell; calcium signaling; cell fusion; cell membrane; chromaffin granule; exocytosis; nonhuman; priority journal; Review; secretory granule; stimulus; adrenal medulla; animal; human; metabolism; secretion (process); Adrenal Medulla; Animals; Calcium Channels; Chromaffin Granules; Exocytosis; Humans; Vesicular Transport Proteins
Año:2018
Volumen:470
Número:1
Página de inicio:155
Página de fin:167
DOI: http://dx.doi.org/10.1007/s00424-017-2052-5
Título revista:Pflugers Archiv European Journal of Physiology
Título revista abreviado:Pflug. Arch. Eur. J. Physiol.
ISSN:00316768
CODEN:PFLAB
CAS:myosin adenosine triphosphatase; protein, 67254-75-5; Calcium Channels; Vesicular Transport Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00316768_v470_n1_p155_Marengo

Referencias:

  • Albillos, A., Dernick, G., Horstmann, H., Almers, W., Alvarez de Toledo, G., Lindau, M., The exocytotic event in chromaffin cells revealed by patch amperometry (1997) Nature, 389 (6650), pp. 509-512. , COI: 1:CAS:528:DyaK2sXmsFaisL8%3D, PID: 9333242
  • Albillos, A., Neher, E., Moser, T., R-type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells (2000) J Neurosci, 20, pp. 8323-8330. , COI: 1:CAS:528:DC%2BD3cXot1GrurY%3D, PID: 11069939
  • Alés, E., Fuentealba, J., Garcia, A.G., Lopez, M.G., Depolarization evokes different patterns of calcium signals and exocytosis in bovine and mouse chromaffin cells: the role of mitochondria (2005) Eur J Neurosci, 21, pp. 142-150. , PID: 15654851
  • Alés, E., Tabares, L., Poyato, J.M., Valero, V., Lindau, M., Alvarez de Toledo, G., High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism (1999) Nat Cell Biol, 1, pp. 40-44. , PID: 10559862
  • Alvarez, Y.D., Belingheri, A.V., Perez Bay, A.E., Javis, S.E., Tedford, H.W., Zamponi, G., Marengo, F.D., The immediately releasable pool of mouse chromaffin cell vesicles is coupled to P/Q-type calcium channels via the synaptic protein interaction site (2013) PLoS One, 8. , COI: 1:CAS:528:DC%2BC3sXis1ars7g%3D, PID: 23382986
  • Alvarez, Y.D., Ibanez, L.I., Uchitel, O.D., Marengo, F.D., P/Q Ca2+ channels are functionally coupled to exocytosis of the immediately releasable pool in mouse chromaffin cells (2008) Cell Calcium, 43, pp. 155-164. , COI: 1:CAS:528:DC%2BD1cXpt1Oqtw%3D%3D, PID: 17561253
  • Alvarez, Y.D., Marengo, F.D., The immediately releasable vesicle pool: highly coupled secretion in chromaffin and other neuroendocrine cells (2011) J Neurochem, 116, pp. 155-163. , COI: 1:CAS:528:DC%2BC3MXhtFGqtLk%3D, PID: 21073467
  • Anantharam, A., Bittner, M.A., Aikman, R.L., Stuenkel, E.L., Schmid, S.L., Axelrod, D., Holz, R.W., A new role for the dynamin GTPase in the regulation of fusion pore expansion (2011) Mol Biol Cell, 22, pp. 1907-1918. , COI: 1:CAS:528:DC%2BC3MXnsFKku70%3D, PID: 21460182
  • Archer, D.A., Graham, M.E., Burgoyne, R.D., Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis (2002) J Biol Chem, 277, pp. 18249-18252. , COI: 1:CAS:528:DC%2BD38XktFCitLw%3D, PID: 11929859
  • Ardiles, A.O., González-Jamett, A.M., Maripillán, J., Naranjo, D., Caviedes, P., Cárdenas, A.M., Calcium channel subtypes differentially regulate fusion pore stability and expansion (2007) J Neurochem, 103, pp. 1574-1581. , COI: 1:CAS:528:DC%2BD2sXhtl2jurnL, PID: 17760862
  • Ardiles, A.O., Maripillán, J., Lagos, V.L., Toro, R., Mora, I.G., Villarroel, L., Alés, E., Cárdenas, A.M., A rapid exocytosis mode in chromaffin cells with a neuronal phenotype (2006) J Neurochem, 99, pp. 29-41. , COI: 1:CAS:528:DC%2BD28XhtFGhtrjJ, PID: 16889641
  • Artalejo, C.R., Adams, M.E., Fox, A.P., Three types of Ca2+ channel trigger secretion with different efficacies in chromaffin cells (1994) Nature, 367, pp. 72-76. , COI: 1:CAS:528:DyaK2cXntVWitA%3D%3D, PID: 8107778
  • Ashery, U., Varoqueaux, F., Voets, T., Betz, A., Thakur, P., Koch, H., Neher, E., Rettig, J., Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells (2000) EMBO J, 19, pp. 3586-3596. , COI: 1:CAS:528:DC%2BD3cXmtlegsrs%3D, PID: 10899113
  • Augustine, G.J., Neher, E., Calcium requirements for secretion in bovine chromaffin cells (1992) J Physiol, 450, pp. 247-271. , COI: 1:STN:280:DyaK3s%2FlvVKnuw%3D%3D, PID: 1432709
  • Bao, H., Goldschen-Ohm, M., Jeggle, P., Chanda, B., Edwardson, J.M., Chapman, E.R., Exocytotic fusion pores are composed of both lipids and proteins (2016) Nat Struct Mol Biol, 23, pp. 67-73. , COI: 1:CAS:528:DC%2BC2MXhvFOmtb%2FK, PID: 26656855
  • Becherer, U., Moser, T., Stuhmer, W., Oheim, M., Calcium regulates exocytosis at the level of single vesicles (2003) Nat Neurosci, 6, pp. 846-853. , COI: 1:CAS:528:DC%2BD3sXlslOju70%3D, PID: 12845327
  • Berberian, K., Torres, A.J., Fang, Q., Kisler, K., Lindau, M., F-actin and myosin II accelerate catecholamine release from chromaffin granules (2009) J Neurosci, 29, pp. 863-870. , COI: 1:CAS:528:DC%2BD1MXhsVCntLk%3D, PID: 19158310
  • Borisovska, M., Zhao, Y., Tsytsyura, Y., Glyvuk, N., Takamori, S., Matti, U., Rettig, J., Bruns, D., v-SNAREs control exocytosis of vesicles from priming to fusion (2005) EMBO J, 24, pp. 2114-2126. , COI: 1:CAS:528:DC%2BD2MXltFWru74%3D, PID: 15920476
  • Brandt, B.L., Hagiwara, S., Kikodoro, Y., Miyazaki, S., Action potentials in the rat chromaffin cell and effects of acetylcholine (1976) J Physiol, 263, pp. 417-439. , COI: 1:CAS:528:DyaE2sXhtlOisLs%3D, PID: 1018274
  • Brewer, K.D., Bacaj, T., Cavalli, A., Camilloni, C., Swarbrick, J.D., Liu, J., Zhou, A., Rizo, J., Dynamic binding mode of a synaptotagmin-1-SNARE complex in solution (2015) Nat Struct Mol Biol, 22, pp. 555-564. , COI: 1:CAS:528:DC%2BC2MXhtFaisbnE, PID: 26030874
  • Cárdenas, A.M., Marengo, F., How the stimulus defines the dynamics of vesicle pool recruitment, fusion mode and vesicle recycling in neuroendocrine cells (2016) J Neurochem, 137, pp. 867-879. , PID: 26849771
  • Chan, S.A., Polo-Parada, L., Smith, C., Action potential stimulation reveals an increased role for P/Q-calcium channel-dependent exocytosis in mouse adrenal tissue slices (2005) Arch Biochem Biophys, 435, pp. 65-73. , COI: 1:CAS:528:DC%2BD2MXos1Glsg%3D%3D, PID: 15680908
  • Chang, C.W., Hui, E., Bai, J., Bruns, D., Chapman, E.R., Jackson, M.B., A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores (2015) J Neurosci, 35, pp. 5772-5780. , COI: 1:CAS:528:DC%2BC2MXpvFOjtr8%3D, PID: 25855187
  • Chiang, H.C., Shin, W., Zhao, W.D., Hamid, E., Sheng, J., Baydyuk, M., Wen, P.J., Wu, L.G., Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles (2014) Nat Commun, 5, p. 3356. , PID: 24561832
  • Chow, R.H., Klingauf, J., Neher, E., Time course of Ca2+ concentration triggering exocytosis in neuroendocrine cells (1994) Proc Natl Acad Sci U S A, 91, pp. 12765-12769. , COI: 1:CAS:528:DyaK2MXivVCru78%3D, PID: 7809118
  • Davis, A.F., Bai, J., Fasshauer, D., Wolowick, M.J., Lewis, J.L., Chapman, E.R., Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes (1999) Neuron, 24, pp. 363-376. , COI: 1:CAS:528:DyaK1MXntFKrtbo%3D, PID: 10571230
  • Dawidowski, D., Cafiso, D.S., Munc18-1 and the syntaxin-1 N terminus regulate open-closed states in a t-SNARE complex (2016) Structure, 24, pp. 392-400. , COI: 1:CAS:528:DC%2BC28XisFGrt7k%3D, PID: 26876096
  • de Diego, A.M., Arnaiz-Cot, J.J., Hernandez-Guijo, J.M., Gandia, L., Garcia, A.G., Differential variations in Ca2+ entry, cytosolic Ca2+ and membrane capacitance upon steady or action potential depolarizing stimulation of bovine chromaffin cells (2008) Acta Physiol (Oxf), 194, pp. 97-109
  • de Diego, A.M., Gandía, L., García, A.G., A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla (2008) Acta Physiol (Oxf), 192 (2), pp. 287-301
  • de Wit, H., Cornelisse, L.N., Toonen, R.F., Verhage, M., Docking of secretory vesicles is syntaxin dependent (2006) PLoS One, 1. , PID: 17205130
  • de Wit, H., Walter, A.M., Milosevic, I., Gulyás-Kovács, A., Riedel, D., Sørensen, J.B., Verhage, M., Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes (2009) Cell, 138, pp. 935-946. , PID: 19716167
  • Dhara, M., Yarzagaray, A., Schwarz, Y., Dutta, S., Grabner, C., Moghadam, P.K., Bost, A., Bruns, D., Complexin synchronizes primed vesicle exocytosis and regulates fusion pore dynamics (2014) J Cell Biol, 204, pp. 1123-1140. , COI: 1:CAS:528:DC%2BC2cXlvFCqtLg%3D, PID: 24687280
  • Duan, K., Yu, X., Zhang, C., Zhou, Z., Control of secretion by temporal patterns of action potentials in adrenal chromaffin cells (2003) J Neurosci, 23, pp. 11235-11243. , COI: 1:CAS:528:DC%2BD3sXpvV2gur0%3D, PID: 14657183
  • Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Südhof, T.C., Rizo, J., A conformational switch in syntaxin during exocytosis: role of munc18 (1999) EMBO J, 18, pp. 4372-4382. , COI: 1:CAS:528:DyaK1MXlslWgu7w%3D, PID: 10449403
  • Dumitrescu Pene, T., Rosé, S.D., Lejen, T., Marcu, M.G., Trifaró, J.M., Expression of various scinderin domains in chromaffin cells indicates that this protein acts as a molecular switch in the control of actin filament dynamics and exocytosis (2005) J Neurochem, 92, pp. 780-789. , PID: 15686479
  • Elhamdani, A., Azizi, F., Artalejo, C.R., Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion (2006) J Neurosci, 26, pp. 3030-3036. , COI: 1:CAS:528:DC%2BD28XivFKmuro%3D, PID: 16540581
  • Elhamdani, A., Palfrey, H.C., Artalejo, C.R., Quantal size is dependent on stimulation frequency and calcium entry in calf chromaffin cells (2001) Neuron, 31, pp. 819-830. , COI: 1:CAS:528:DC%2BD3MXnt1Oqsb8%3D, PID: 11567619
  • Estévez-Herrera, J., González-Santana, A., Baz-Dávila, R., Machado, J.D., Borges, R., The intravesicular cocktail and its role in the regulation of exocytosis (2016) J Neurochem, 137, pp. 897-903. , PID: 26990968
  • Fang, Q., Berberian, K., Gong, L.W., Hafez, I., Sørensen, J.B., Lindau, M., The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics (2008) Proc Natl Acad Sci U S A, 105, pp. 15388-15392. , COI: 1:CAS:528:DC%2BD1cXht1Gnt7%2FP, PID: 18829435
  • Fang, Q., Zhao, Y., Herbst, A.D., Kim, B.N., Lindau, M., Positively charged amino acids at the SNAP-25 C terminus determine fusion rates, fusion pore properties, and energetics of tight SNARE complex zippering (2015) J Neurosci, 35, pp. 3230-3239. , COI: 1:CAS:528:DC%2BC2MXhtVSjs77F, PID: 25698757
  • Fang, Q., Zhao, Y., Lindau, M., Juxtamembrane tryptophans of synaptobrevin 2 control the process of membrane fusion (2013) FEBS Lett, 587, pp. 67-72. , COI: 1:CAS:528:DC%2BC38XhslymtLjK, PID: 23178715
  • Firestone, J.A., Browning, M.D., Synapsin II phosphorylation and catecholamine release in bovine adrenal chromaffin cells: additive effects of histamine and nicotine (1992) J Neurochem, 58, pp. 441-447. , COI: 1:CAS:528:DyaK38XnslSiuw%3D%3D, PID: 1729391
  • Fulop, T., Radabaugh, S., Smith, C., Activity-dependent differential transmitter release in mouse adrenal chromaffin cells (2005) J Neurosci, 25, pp. 7324-7332. , COI: 1:CAS:528:DC%2BD2MXpsFGitbY%3D, PID: 16093382
  • Gabel, M., Delavoie, F., Demais, V., Royer, C., Bailly, Y., Vitale, N., Bader, M.F., Chasserot-Golaz, S., Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis (2015) J Cell Biol, 210, pp. 785-800. , COI: 1:CAS:528:DC%2BC2MXhsleru7%2FN, PID: 26323692
  • García, A.G., Garcia-de-Diego, A.M., Gandia, L., Borges, R., Garcia-Sancho, J., Calcium signaling and exocytosis in adrenal chromaffin cells (2006) Physiol Rev, 86, pp. 1093-1131. , PID: 17015485
  • García, A.G., Padín, F., Fernández-Morales, J.C., Maroto, M., García-Sancho, J., Cytosolic organelles shape calcium signals and exo-endocytotic responses of chromaffin cells (2012) Cell Calcium, 51, pp. 309-320. , PID: 22209033
  • García-Sancho, J., de Diego, A.M., García, A.G., Mitochondria and chromaffin cell function (2012) Pflugers Arch, 464, pp. 33-41. , PID: 22278417
  • Gasman, S., Chasserot-Golaz, S., Malacombe, M., Way, M., Bader, M.F., Regulated exocytosis in neuroendocrine cells: a role for subplasmalemmal Cdc42/N-WASP-induced actin filaments (2004) Mol Biol Cell, 15, pp. 520-531. , COI: 1:CAS:528:DC%2BD2cXhtlGmtb0%3D, PID: 14617808
  • Gerke, V., Creutz, C.E., Moss, S.E., Annexins: linking Ca2+ signalling to membrane dynamics (2005) Nat Rev Mol Cell Biol, 6, pp. 449-4461. , COI: 1:CAS:528:DC%2BD2MXks1Gmtbo%3D, PID: 15928709
  • Giner, D., López, I., Villanueva, J., Torres, V., Viniegra, S., Gutiérrez, L.M., Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells (2007) Neurosci, 146, pp. 659-669. , COI: 1:CAS:528:DC%2BD2sXkslajtLc%3D
  • Giner, D., Neco, P., Francés Mdel, M., López, I., Viniegra, S., Gutiérrez, L.M., Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells (2005) J Cell Sci, 118, pp. 2871-2880. , COI: 1:CAS:528:DC%2BD2MXnsVCjtrc%3D, PID: 15976446
  • Giraudo, C.G., Eng, W.S., Melia, T.J., Rothman, J.E., A clamping mechanism involved in SNARE-dependent exocytosis (2006) Science, 313, pp. 676-680. , COI: 1:CAS:528:DC%2BD28Xnsl2htr4%3D, PID: 16794037
  • González-Jamett, A.M., Báez-Matus, X., Hevia, M.A., Guerra, M.J., Olivares, M.J., Martínez, A.D., Neely, A., Cárdenas, A.M., The association of dynamin with synaptophysin regulates quantal size and duration of exocytotic events in chromaffin cells (2010) J Neurosci, 30, pp. 10683-10691. , PID: 20702699
  • González-Jamett, A.M., Guerra, M.J., Olivares, M.J., Haro-Acuña, V., Baez-Matus, X., Momboisse, F., Martínez-Quiles, N., Cárdenas, A.M., The F-actin binding protein cortactin regulates the dynamics of the exocytotic fusion pore through its SH3 domain (2017) Front Cell Neurosci, 11, p. 130. , PID: 28522963
  • González-Jamett, A.M., Haro-Acuña, V., Momboisse, F., Caviedes, P., Bevilacqua, J.A., Cárdenas, A.M., Dynamin-2 in nervous system disorders (2014) J Neurochem, 128, pp. 210-223. , PID: 24102355
  • González-Jamett, A.M., Momboisse, F., Guerra, M.J., Ory, S., Báez-Matus, X., Barraza, N., Calco, V., Cárdenas, A.M., Dynamin-2 regulates fusion pore expansion and quantal release through a mechanism that involves actin dynamics in neuroendocrine chromaffin cells (2013) PLoS One, 8. , PID: 23940613
  • Graham, M.E., O'Callaghan, D.W., McMahon, H.T., Burgoyne, R.D., Dynamin-dependent and dynamin-independent processes contribute to the regulation of single vesicle release kinetics and quantal size (2002) Proc Natl Acad Sci U S A, 99, pp. 7124-7129. , COI: 1:CAS:528:DC%2BD38XjvFCqur0%3D, PID: 11997474
  • Gulyás-Kovács, A., de Wit, H., Milosevic, I., Kochubey, O., Toonen, R., Klingauf, J., Verhage, M., Sørensen, J.B., Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming (2007) J Neurosci, 27, pp. 8676-8686. , PID: 17687045
  • Han, X., Wang, C.T., Bai, J., Chapman, E.R., Jackson, M.B., Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis (2004) Science, 304, pp. 289-292. , COI: 1:CAS:528:DC%2BD2cXivV2isb4%3D, PID: 15016962
  • Heinemann, C., von Ruden, L., Chow, R.H., Neher, E., A two-step model of secretion control in neuroendocrine cells (1993) Pflugers Archiv, 424, pp. 105-112. , COI: 1:STN:280:DyaK2c%2FitFaksg%3D%3D, PID: 8414901
  • Holman, M.E., Coleman, H.A., Tonta, M.A., Parkington, H.C., Synaptic transmission from splanchnic nerves to the adrenal medulla of guinea-pigs (1994) J Physiol, 478, pp. 115-124. , PID: 7965827
  • Horrigan, F.T., Bookman, R.J., Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells (1994) Neuron, 13, pp. 1119-1129. , COI: 1:CAS:528:DyaK2MXitlylsL0%3D, PID: 7946349
  • Hugo, S., Dembla, E., Halimani, M., Matti, U., Rettig, J., Becherer, U., Deciphering dead-end docking of large dense core vesicles in bovine chromaffin cells (2013) J Neurosci, 33, pp. 17123-17137. , COI: 1:CAS:528:DC%2BC3sXhslSmsb%2FL, PID: 24155316
  • Iijima, T., Matsumoto, G., Kidokoro, Y., Synaptic activation of rat adrenal medulla examined with a large photodiode array in combination with a voltage-sensitive dye (1992) Neuroscience, 51, pp. 211-219. , COI: 1:STN:280:DyaK3s7gtFalsA%3D%3D, PID: 1361217
  • Jackson, J., Papadopulos, A., Meunier, F.A., McCluskey, A., Robinson, P.J., Keating, D.J., Small molecules demonstrate the role of dynamin as a bi-directional regulator of the exocytosis fusion pore and vesicle release (2015) Mol Psychiatry, 20, pp. 810-819. , COI: 1:CAS:528:DC%2BC2MXotVeqtLs%3D, PID: 25939402
  • Kabachinski, G., Yamaga, M., Kielar-Grevstad, D.M., Bruinsma, S., Martin, T.F., CAPS and Munc13 utilize distinct PIP2-linked mechanisms to promote vesicle exocytosis (2014) Mol Biol Cell, 5, pp. 508-521
  • Kidokoro, Y., Ritchie, A.K., Chromaffin cell action potentials and their possible role in adrenaline secretion from rat adrenal medulla (1980) J Physiol, 307, pp. 199-216. , COI: 1:CAS:528:DyaL3MXksV2ktg%3D%3D, PID: 7205664
  • Kim, T., Gondré-Lewis, M.C., Arnaoutova, I., Loh, Y.P., Dense-core secretory granule biogenesis (2006) Physiology (Bethesda), 21, pp. 124-133. , COI: 1:CAS:528:DC%2BD28XksFSqtLo%3D
  • Klingauf, J., Neher, E., Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells (1997) Biophys J, 72, pp. 674-690. , COI: 1:CAS:528:DyaK2sXnsFGktQ%3D%3D, PID: 9017195
  • Laduron, P., Belpaire, F., Tissue fractionation and catecholamines II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla (1968) Biochem Pharmacol, 17, pp. 1127-1140. , COI: 1:CAS:528:DyaF1cXksVaisb8%3D, PID: 4298204
  • Lai, Y., Diao, J., Cipriano, D.J., Zhang, Y., Pfuetzner, R.A., Padolina, M.S., Brunger, A.T., Complexin inhibits spontaneous release and synchronizes Ca2+-triggered synaptic vesicle fusion by distinct mechanisms (2014) eLife, 3. , e03756
  • Lara, B., Gandia, L., Martinez-Sierra, R., Torres, A., Garcia, A.G., Q-type Ca2+ channels are located closer to secretory sites than L-type channels: functional evidence in chromaffin cells (1998) Pflugers Arch, 435, pp. 472-478. , COI: 1:CAS:528:DyaK1cXmtVOqsg%3D%3D, PID: 9446693
  • Lefkowitz, J.J., DeCrescenzo, V., Duan, K., Bellve, K.D., Fogarty, K.E., Walsh, J.V., Jr., ZhuGe, R., Catecholamine exocytosis during low frequency stimulation in mouse adrenal chromaffin cells is primarily asynchronous and controlled by the novel mechanism of Ca2+ syntilla suppression (2014) J Physiol, 592, pp. 4639-4655. , COI: 1:CAS:528:DC%2BC2cXhvVCgtrjJ, PID: 25128575
  • Lin, M.Y., Rohan, J.G., Cai, H., Reim, K., Ko, C.P., Chow, R.H., Complexin facilitates exocytosis and synchronizes vesicle release in two secretory model systems (2013) J Physiol, 591, pp. 2463-2473. , COI: 1:CAS:528:DC%2BC3sXpsVeitb8%3D, PID: 23401610
  • Liu, J., Guo, T., Wei, Y., Liu, M., Sui, S.F., Complexin is able to bind to SNARE core complexes in different assembled states with distinct affinity (2006) Biochem Biophys Res Commun, 347, pp. 413-419. , COI: 1:CAS:528:DC%2BD28XntFWkt7Y%3D, PID: 16828463
  • Liu, Y., Schirra, C., Edelmann, L., Matti, U., Rhee, J., Hof, D., Bruns, D., Rettig, J., Two distinct secretory vesicle-priming steps in adrenal chromaffin cells (2010) J Cell Biol, 190, pp. 1067-1077. , COI: 1:CAS:528:DC%2BC3cXht1ahsbjF, PID: 20855507
  • Liu, Y., Schirra, C., Stevens, D.R., Matti, U., Speidel, D., Hof, D., Bruns, D., Rettig, J., CAPS facilitates filling of the rapidly releasable pool of large dense-core vesicles (2008) J Neurosci, 28, pp. 5594-5601. , COI: 1:CAS:528:DC%2BD1cXmslWitb0%3D, PID: 18495893
  • Lomax, R.B., Michelena, P., Nunez, L., Garcia-Sancho, J., Garcia, A.G., Montiel, C., Different contributions of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes (1997) Am J Phys, 272, pp. C476-C484. , COI: 1:CAS:528:DyaK2sXhvVCrsL4%3D
  • Luccardini, C., Yakovlev, A.V., Pasche, M., Gaillard, S., Li, D., Rousseau, F., Ly, R., Oheim, M., Measuring mitochondrial and cytoplasmic Ca2+ in EGFP expressing cells with a low-affinity calcium ruby and its dextran conjugate (2009) Cell Calcium, 45, pp. 275-283. , COI: 1:CAS:528:DC%2BD1MXivVemsLs%3D, PID: 19167753
  • Ma, C., Li, W., Xu, Y., Rizo, J., Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex (2011) Nat Struct Mol Biol, 18, pp. 542-549. , COI: 1:CAS:528:DC%2BC3MXkslCmsLg%3D, PID: 21499244
  • Man, K.N., Imig, C., Walter, A.M., Pinheiro, P.S., Stevens, D.R., Rettig, J., Sørensen, J.B., Wojcik, S.M., Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis (2015) eLife, 4
  • Marengo, F.D., Calcium gradients and exocytosis in bovine adrenal chromaffin cells (2005) Cell Calcium, 38, pp. 87-99. , COI: 1:CAS:528:DC%2BD2MXos1ahtL0%3D, PID: 16076487
  • Marengo, F.D., Monck, J.R., Development and dissipation of Ca(2+) gradients in adrenal chromaffin cells (2000) Biophys J, 79, pp. 1800-1820. , COI: 1:CAS:528:DC%2BD3cXnt12hsbY%3D, PID: 11023887
  • Marengo, F.D., Monck, J.R., Spatial distribution of Ca(2+) signals during repetitive depolarizing stimuli in adrenal chromaffin cells (2003) Biophys J, 85, pp. 3397-3417. , COI: 1:CAS:528:DC%2BD3sXptFWqsLw%3D, PID: 14581241
  • Martinez-Espinosa, P.L., Yang, C., Gonzalez-Perez, V., Xia, X.M., Lingle, C.J., Knockout of the BK beta 2 subunit abolishes inactivation of BK currents in mouse adrenal chromaffin cells and results in slow-wave burst activity (2014) J Gen Physiol, 144, pp. 275-295. , COI: 1:CAS:528:DC%2BC2cXitFWlsb%2FI, PID: 25267913
  • Maximov, A., Tang, J., Yang, X., Pang, Z.P., Südhof, T.C., Complexin controls the force transfer from SNARE complexes to membranes in fusion (2009) Science, 323, pp. 516-521. , COI: 1:CAS:528:DC%2BD1MXntFWksQ%3D%3D, PID: 19164751
  • Mohrmann, R., de Wit, H., Connell, E., Pinheiro, P.S., Leese, C., Bruns, D., Davletov, B., Sørensen, J.B., Synaptotagmin interaction with SNAP-25 governs vesicle docking, priming, and fusion triggering (2013) J Neurosci, 33, pp. 14417-14430. , COI: 1:CAS:528:DC%2BC3sXhsVenurbL, PID: 24005294
  • Monck, J.R., Robinson, I.M., Escobar, A.L., Vergara, J.L., Fernandez, J.M., Pulsed laser imaging of rapid Ca2+ gradients in excitable cells (1994) Biophys J, 67, pp. 505-514. , COI: 1:CAS:528:DyaK2cXlsFamsbg%3D, PID: 7948669
  • Moser, T., Neher, E., Rapid exocytosis in single chromaffin cells recorded from mouse adrenal slices (1997) J Neurosci, 17, pp. 2314-2323. , COI: 1:CAS:528:DyaK2sXitV2isr8%3D, PID: 9065492
  • Moya-Diaz, J., Alvarez, Y.D., Montenegro, M., Bayones, L., Belingheri, A.V., Gonzalez-Jamett, A.M., Cardenas, A.M., Marengo, F.D., Sustained exocytosis after action potential-like stimulation at low frequencies in mouse chromaffin cells depends on a dynamin-dependent fast endocytotic process (2016) Front Cell Neurosci, 10, p. 184. , PID: 27507935
  • Nagy, G., Kim, J.H., Pang, Z.P., Matti, U., Rettig, J., Südhof, T.C., Sørensen, J.B., Different effects on fast exocytosis induced by synaptotagmin 1 and 2 isoforms and abundance but not by phosphorylation (2006) J Neurosci, 26, pp. 632-643. , COI: 1:CAS:528:DC%2BD28XosFWqtA%3D%3D, PID: 16407561
  • Neco, P., Fernández-Peruchena, C., Navas, S., Gutiérrez, L.M., de Toledo, G.A., Alés, E., Myosin II contributes to fusion pore expansion during exocytosis (2008) J Biol Chem, 283, pp. 10949-10957. , COI: 1:CAS:528:DC%2BD1cXksFagurw%3D, PID: 18283106
  • Neco, P., Giner, D., Viniegra, S., Borges, R., Villarroel, A., Gutiérrez, L.M., New roles of myosin II during vesicle transport and fusion in chromaffin cells (2004) J Biol Chem, 279, pp. 27450-27457. , COI: 1:CAS:528:DC%2BD2cXkvFGnt7c%3D, PID: 15069078
  • Neher, E., Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release (1998) Neuron, 20, pp. 389-399. , COI: 1:CAS:528:DyaK1cXit1Gmsrg%3D, PID: 9539117
  • Neher, E., Augustine, G.J., Calcium gradients and buffers in bovine chromaffin cells (1992) J Physiol, 450, pp. 273-301. , COI: 1:STN:280:DyaK3s%2FlvVKmsg%3D%3D, PID: 1331424
  • Neher, E., Zucker, R.S., Multiple calcium-dependent processes related to secretion in bovine chromaffin cells (1993) Neuron, 10, pp. 21-30. , COI: 1:CAS:528:DyaK3sXhs1Gku70%3D, PID: 8427700
  • Ngatchou, A.N., Kisler, K., Fang, Q., Walter, A.M., Zhao, Y., Bruns, D., Sørensen, J.B., Lindau, M., Role of the synaptobrevin C terminus in fusion pore formation (2010) Proc Natl Acad Sci U S A, 107, pp. 18463-18468. , COI: 1:CAS:528:DC%2BC3cXhtl2ktrrM, PID: 20937897
  • Nguyen Truong, C.Q., Nestvogel, D., Ratai, O., Schirra, C., Stevens, D.R., Brose, N., Rhee, J., Rettig, J., Secretory vesicle priming by CAPS is independent of its SNARE-binding MUN domain (2014) Cell Rep, 9, pp. 902-909. , COI: 1:CAS:528:DC%2BC2cXhvVantbbP, PID: 25437547
  • Novara, M., Baldelli, P., Cavallari, D., Carabelli, V., Giancippoli, A., Carbone, E., Exposure to cAMP and beta-adrenergic stimulation recruits Ca(V)3 T-type channels in rat chromaffin cells through Epac cAMP-receptor proteins (2004) J Physiol, 558, pp. 433-449. , COI: 1:CAS:528:DC%2BD2cXmtlKitL0%3D, PID: 15133061
  • Nowycky, M.C., Pinter, M.J., Time courses of calcium and calcium-bound buffers following calcium influx in a model cell (1993) Biophys J, 64, pp. 77-91. , COI: 1:CAS:528:DyaK3sXpvFShsg%3D%3D, PID: 8431551
  • Oelkers, M., Witt, H., Halder, P., Jahn, R., Janshoff, A., SNARE-mediated membrane fusion trajectories derived from force-clamp experiments (2016) Proc Natl Acad Sci U S A, 113, pp. 13051-13056. , COI: 1:CAS:528:DC%2BC28XhslOmt7rL, PID: 27807132
  • Olivares, M.J., González-Jamett, A.M., Guerra, M.J., Baez-Matus, X., Haro-Acuña, V., Martínez-Quiles, N., Cárdenas, A.M., Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells (2014) PLoS One, 9. , PID: 24901433
  • O’Sullivan, A.J., Cheek, T.R., Moreton, R.B., Berridge, M.J., Burgoyne, R.D., Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2 (1989) EMBO J, 8, pp. 401-411. , PID: 2721487
  • Papadopulos, A., Gomez, G.A., Martin, S., Jackson, J., Gormal, R.S., Keating, D.J., Yap, A.S., Meunier, F.A., Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking (2015) Nat Commun, 6, p. 6297. , COI: 1:CAS:528:DC%2BC2MXhtF2it77M, PID: 25708831
  • Papadopulos, A., Martin, S., Tomatis, V.M., Gormal, R.S., Meunier, F.A., Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites (2013) J Neurosci, 33, pp. 19143-19153. , COI: 1:CAS:528:DC%2BC3sXhvFSqu7nO, PID: 24305811
  • Parsaud, L., Li, L., Jung, C.H., Park, S., Saw, N.M., Park, S., Kim, M.Y., Sugita, S., Calcium-dependent activator protein for secretion 1 (CAPS1) binds to syntaxin-1 in a distinct mode from Munc13-1 (2013) J Biol Chem, 288, pp. 23050-23063. , COI: 1:CAS:528:DC%2BC3sXht1GjsrrI, PID: 23801330
  • Pasche, M., Matti, U., Hof, D., Rettig, J., Becherer, U., Docking of LDCVs is modulated by lower intracellular [Ca2+] than priming (2012) PLoS One, 7. , COI: 1:CAS:528:DC%2BC38Xns1Ggsrw%3D, PID: 22590540
  • Pérez-Lara, Á., Thapa, A., Nyenhuis, S.B., Nyenhuis, D.A., Halder, P., Tietzel, M., Tittmann, K., Jahn, R., PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium (2016) eLife, 5
  • Perrais, D., Kleppe, I.C., Taraska, J.W., Almers, W., Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells (2004) J Physiol, 560, pp. 413-428. , COI: 1:CAS:528:DC%2BD2cXpslKltLg%3D, PID: 15297569
  • Pinheiro, P.S., Houy, S., Sørensen, J.B., C2-domain containing calcium sensors in neuroendocrine secretion (2016) J Neurochem, 139, pp. 943-958. , COI: 1:CAS:528:DC%2BC28XhvVWmu7vN, PID: 27731902
  • Rao, T.C., Passmore, D.R., Peleman, A.R., Das, M., Chapman, E.R., Anantharam, A., Distinct fusion properties of synaptotagmin-1 and synaptotagmin-7 bearing dense core granules (2014) Mol Biol Cell, 25, pp. 2416-2427. , PID: 24943843
  • Rudolf, R., Salm, T., Rustom, A., Gerdes, H.H., Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering (2001) Mol Biol Cell, 12, pp. 1353-1365. , COI: 1:CAS:528:DC%2BD3MXjslWhsbw%3D, PID: 11359927
  • Samasilp, P., Chan, S.A., Smith, C., Activity-dependent fusion pore expansion regulated by a calcineurin-dependent dynamin-syndapin pathway in mouse adrenal chromaffin cells (2012) J Neurosci, 32, pp. 10438-10447. , COI: 1:CAS:528:DC%2BC38XhtFart7rK, PID: 22836276
  • Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K., McNew, J.A., Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I (2006) Nat Struct Mol Biol, 13, pp. 748-750. , COI: 1:CAS:528:DC%2BD28Xnsl2jt7o%3D, PID: 16845390
  • Segovia, M., Alés, E., Montes, M.A., Bonifas, I., Jemal, I., Lindau, M., Maximov, A., Alvarez de Toledo, G., Push-and-pull regulation of the fusion pore by synaptotagmin-7 (2010) Proc Natl Acad Sci U S A, 107, pp. 11907-19032. , COI: 1:CAS:528:DC%2BC3cXhsVCqsbvP, PID: 20956309
  • Segura, J., Gil, A., Soria, B., Modeling study of exocytosis in neuroendocrine cells: influence of the geometrical parameters (2000) Biophys J, 79, pp. 1771-1786. , COI: 1:CAS:528:DC%2BD3cXnt12hsbg%3D, PID: 11023885
  • Shupliakov, O., Haucke, V., Pechstein, A., How synapsin I may cluster synaptic vesicles (2011) Semin Cell Dev Biol, 22, pp. 393-399. , COI: 1:CAS:528:DC%2BC3MXhtF2jt7fP, PID: 21798362
  • Simon, S.M., Llinas, R.R., Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release (1985) Biophys J, 48, pp. 485-498. , COI: 1:CAS:528:DyaL2MXltlGqsLw%3D, PID: 2412607
  • Söllner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., Rothman, J.E., A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion (1993) Cell, 75, pp. 409-418. , PID: 8221884
  • Sorensen, J.B., Formation, stabilisation and fusion of the readily releasable pool of secretory vesicles (2004) Pflugers Archiv, 448, pp. 347-362. , COI: 1:CAS:528:DC%2BD2cXltVSnu70%3D, PID: 14997396
  • Stevens, D.R., Schirra, C., Becherer, U., Rettig, J., Vesicle pools: lessons from adrenal chromaffin cells (2011) Front Synaptic Neurosci, 3, p. 2. , COI: 1:CAS:528:DC%2BC3MXpt12gu7o%3D, PID: 21423410
  • Südhof, T.C., Rothman, J.E., Membrane fusion: grappling with SNARE and SM proteins (2009) Science, 323, pp. 474-477. , PID: 19164740
  • Takahashi, H., Shahin, V., Henderson, R.M., Takeyasu, K., Edwardson, J.M., Interaction of synaptotagmin with lipid bilayers, analyzed by single-molecule force spectroscopy (2010) Biophys J, 99, pp. 2550-2558. , COI: 1:CAS:528:DC%2BC3cXhtlShsbbP, PID: 20959096
  • Tomatis, V.M., Papadopulos, A., Malintan, N.T., Martin, S., Wallis, T., Gormal, R.S., Kendrick-Jones, J., Meunier, F.A., Myosin VI small insert isoform maintains exocytosis by tethering secretory granules to the cortical actin (2013) J Cell Biol, 200, pp. 301-320. , COI: 1:CAS:528:DC%2BC3sXitFemsbo%3D, PID: 23382463
  • Toonen, R.F., Kochubey, O., de Wit, H., Gulyas-Kovacs, A., Konijnenburg, B., Sørensen, J.B., Klingauf, J., Verhage, M., Dissecting docking and tethering of secretory vesicles at the target membrane (2006) EMBO J, 25, pp. 3725-3737. , COI: 1:CAS:528:DC%2BD28XovVSqu7w%3D, PID: 16902411
  • Toonen, R.F., Verhage, M., Munc18-1 in secretion: lonely Munc joins SNARE team and takes control (2007) Trends Neurosci, 30, pp. 564-572. , COI: 1:CAS:528:DC%2BD2sXht12gu7bO, PID: 17956762
  • Torregrosa-Hetland, C.J., Villanueva, J., Giner, D., Lopez-Font, I., Nadal, A., Quesada, I., Viniegra, S., Gutiérrez, L.M., The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells (2011) J Cell Sci, 124, pp. 727-734. , COI: 1:CAS:528:DC%2BC3MXktVOrurc%3D, PID: 21303931
  • Torregrosa-Hetland, C.J., Villanueva, J., López-Font, I., Garcia-Martinez, V., Gil, A., Gonzalez-Vélez, V., Segura, J., Gutiérrez, L.M., Association of SNAREs and calcium channels with the borders of cytoskeletal cages organizes the secretory machinery in chromaffin cells (2010) Cell Mol Neurobiol, 30, pp. 1315-1319. , COI: 1:CAS:528:DC%2BC3cXhs1Wns77J, PID: 21046460
  • Trouillon, R., Ewing, A.G., Amperometric measurements at cells support a role for dynamin in the dilation of the fusion pore during exocytosis (2013) ChemPhysChem, 14, pp. 2295-2301. , COI: 1:CAS:528:DC%2BC3sXhtVCqu7bM, PID: 23824748
  • Tryoen-Tóth, P., Chasserot-Golaz, S., Tu, A., Gherib, P., Bader, M.F., Beaumelle, B., Vitale, N., HIV-1 Tat protein inhibits neurosecretion by binding to phosphatidylinositol 4,5-bisphosphate (2013) J Cell Sci, 126, pp. 454-463. , PID: 23178941
  • Tsai, C.C., Yang, C.C., Shih, P.Y., Wu, C.S., Chen, C.D., Pan, C.Y., Chen, Y.T., Exocytosis of a single bovine adrenal chromaffin cell: the electrical and morphological studies (2008) J Phys Chem B, 112, pp. 9165-9173. , COI: 1:CAS:528:DC%2BD1cXotFGqs7Y%3D, PID: 18598074
  • Umbrecht-Jenck, E., Demais, V., Calco, V., Bailly, Y., Bader, M.F., Chasserot-Golaz, S., S100A10-mediated translocation of annexin-A2 to SNARE proteins in adrenergic chromaffin cells undergoing exocytosis (2010) Traffic, 11, pp. 958-971. , COI: 1:CAS:528:DC%2BC3cXotFGrtrc%3D, PID: 20374557
  • van Weering, J.R., Wijntjes, R., de Wit, H., Wortel, J., Cornelisse, L.N., Veldkamp, W.J., Verhage, M., Automated analysis of secretory vesicle distribution at the ultrastructural level (2008) J Neurosci Methods, 173, pp. 83-90. , PID: 18577400
  • Vandael, D.H., Ottaviani, M.M., Legros, C., Lefort, C., Guerineau, N.C., Allio, A., Carabelli, V., Carbone, E., Reduced availability of voltage-gated sodium channels by depolarization or blockade by tetrodotoxin boosts burst firing and catecholamine release in mouse chromaffin cells (2015) J Physiol, 593, pp. 905-927. , COI: 1:CAS:528:DC%2BC2MXisFemt7s%3D, PID: 25620605
  • Villalobos, C., Nunez, L., Montero, M., Garcia, A.G., Alonso, M.T., Chamero, P., Alvarez, J., Garcia-Sancho, J., Redistribution of Ca2+ among cytosol and organella during stimulation of bovine chromaffin cells (2002) FASEB J, 16, pp. 343-353. , COI: 1:CAS:528:DC%2BD38XhvVCmt7Y%3D, PID: 11874983
  • Villanueva, M., Thornley, K., Augustine, G.J., Wightman, R.M., Synapsin II negatively regulates catecholamine release (2006) Brain Cell Biol, 35, pp. 125-136. , COI: 1:CAS:528:DC%2BD2sXht1anu7rM, PID: 17957479
  • Vitale, M.L., Seward, E.P., Trifaró, J.M., Chromaffin cell cortical actin network dynamics control the size of the release-ready vesicle pool and the initial rate of exocytosis (1995) Neuron, 14, pp. 353-363. , COI: 1:CAS:528:DyaK2MXjvFejs7k%3D, PID: 7857644
  • Voets, T., Dissection of three Ca2+-dependent steps leading to secretion in chromaffin cells from mouse adrenal slices (2000) Neuron, 28, pp. 537-545. , COI: 1:CAS:528:DC%2BD3cXoslaisbg%3D, PID: 11144362
  • Voets, T., Moser, T., Lund, P.E., Chow, R.H., Geppert, M., Sudhof, T.C., Neher, E., Intracellular calcium dependence of large dense-core vesicle exocytosis in the absence of synaptotagmin I (2001) Proc Natl Acad Sci U S A, 98, pp. 11680-11685. , COI: 1:CAS:528:DC%2BD3MXnt12jsLc%3D, PID: 11562488
  • Voets, T., Neher, E., Moser, T., Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices (1999) Neuron, 23, pp. 607-615. , COI: 1:CAS:528:DyaK1MXltVynu78%3D, PID: 10433271
  • Voets, T., Toonen, R.F., Brian, E.C., de Wit, H., Moser, T., Rettig, J., Südhof, T.C., Verhage, M., Munc18-1 promotes large dense-core vesicle docking (2001) Neuron, 31, pp. 581-591. , COI: 1:CAS:528:DC%2BD3MXmvV2itbY%3D, PID: 11545717
  • Walter, A.M., Pinheiro, P.S., Verhage, M., Sorensen, J.B., A sequential vesicle pool model with a single release sensor and a Ca(2+)-dependent priming catalyst effectively explains Ca(2+)-dependent properties of neurosecretion (2013) PLoS Comput Biol, 9. , PID: 24339761
  • Wang, C.T., Bai, J., Chang, P.Y., Chapman, E.R., Jackson, M.B., Synaptotagmin-Ca2+ triggers two sequential steps in regulated exocytosis in rat PC12 cells: fusion pore opening and fusion pore dilation (2006) J Physiol, 570, pp. 295-307. , COI: 1:CAS:528:DC%2BD28XmtV2itg%3D%3D, PID: 16293646
  • Wang, S., Li, Y., Ma, C., Synaptotagmin-1 C2B domain interacts simultaneously with SNAREs and membranes to promote membrane fusion (2016) eLife, 5
  • Wang, Z., Liu, H., Gu, Y., Chapman, E.R., Reconstituted synaptotagmin I mediates vesicle docking, priming, and fusion (2011) J Cell Biol, 195, pp. 1159-1170. , COI: 1:CAS:528:DC%2BC38XktlGrsg%3D%3D, PID: 22184197
  • Wen, P.J., Grenklo, S., Arpino, G., Tan, X., Liao, H.S., Heureaux, J., Peng, S.Y., Wu, L.G., Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane (2016) Nat Commun, 7, p. 12604. , COI: 1:CAS:528:DC%2BC28XhsVKqsrvJ, PID: 27576662
  • Wu, Z., Bello, O.D., Thiyagarajan, S., Auclair, S.M., Vennekate, W., Krishnakumar, S.S., O'Shaughnessy, B., Karatekin, E., Dilation of fusion pores by crowding of SNARE proteins (2017) eLife, 6
  • Wykes, R.C., Bauer, C.S., Khan, S.U., Weiss, J.L., Seward, E.P., Differential regulation of endogenous N- and P/Q-type Ca2+ channel inactivation by Ca2+/calmodulin impacts on their ability to support exocytosis in chromaffin cells (2007) J Neurosci, 27, pp. 5236-5248. , COI: 1:CAS:528:DC%2BD2sXmtVWrtrk%3D, PID: 17494710
  • Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A.Y., Uervirojnangkoorn, M., Zeldin, O.B., Brunger, A.T., Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis (2015) Nature, 525, pp. 62-67. , COI: 1:CAS:528:DC%2BC2MXhtlGgurfN, PID: 26280336
  • Zhou, Z., Misler, S., Action potential-induced quantal secretion of catecholamines from rat adrenal chromaffin cells (1995) J Biol Chem, 270, pp. 3498-3505. , COI: 1:CAS:528:DyaK2MXjvVyku7o%3D, PID: 7876083

Citas:

---------- APA ----------
Marengo, F.D. & Cárdenas, A.M. (2018) . How does the stimulus define exocytosis in adrenal chromaffin cells?. Pflugers Archiv European Journal of Physiology, 470(1), 155-167.
http://dx.doi.org/10.1007/s00424-017-2052-5
---------- CHICAGO ----------
Marengo, F.D., Cárdenas, A.M. "How does the stimulus define exocytosis in adrenal chromaffin cells?" . Pflugers Archiv European Journal of Physiology 470, no. 1 (2018) : 155-167.
http://dx.doi.org/10.1007/s00424-017-2052-5
---------- MLA ----------
Marengo, F.D., Cárdenas, A.M. "How does the stimulus define exocytosis in adrenal chromaffin cells?" . Pflugers Archiv European Journal of Physiology, vol. 470, no. 1, 2018, pp. 155-167.
http://dx.doi.org/10.1007/s00424-017-2052-5
---------- VANCOUVER ----------
Marengo, F.D., Cárdenas, A.M. How does the stimulus define exocytosis in adrenal chromaffin cells?. Pflug. Arch. Eur. J. Physiol. 2018;470(1):155-167.
http://dx.doi.org/10.1007/s00424-017-2052-5