Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Maxwell equations are solved in a layer comprising a finite number of homogeneous isotropic dielectric regions ended by anisotropic perfectly matched layers (PMLs). The boundary-value problem is solved and the dispersion relation inside the PML is derived. The general expression of the eigenvalues equation for an arbitrary number of regions in each layer is obtained, and both polarization modes are considered. The modal functions of a single layer ended by PMLs are found, and their orthogonality relation is derived. The present method is useful to simulate scattering problems from dielectric objects as well as propagation in planar slab waveguides. Its potential to deal with more complex problems such as the scattering from an object with arbitrary cross section in open space using the multilayer modal method is briefly discussed. © 2005 Elsevier GmbH. All rights reserved.

Registro:

Documento: Artículo
Título:Eigenmodes of index-modulated layers with lateral PMLs
Autor:Skigin, D.C.
Filiación:Grupo De Electromagnetismo Aplicado, Departamento De Física, Ciudad Universitaria, Pabellon I, C1428EHA Buenos Aires, Argentina
Palabras clave:Eigenmodes; Modal method; Perfectly matched layers; Scattering; Boundary conditions; Boundary value problems; Dielectric materials; Eigenvalues and eigenfunctions; Finite difference method; Light propagation; Light scattering; Maxwell equations; Eigenmodes; Index-modulated structures; Modal methods; Perfectly matched layers; Light modulation
Año:2005
Volumen:116
Número:7
Página de inicio:343
Página de fin:350
DOI: http://dx.doi.org/10.1016/j.ijleo.2005.02.007
Título revista:Optik
Título revista abreviado:Optik
ISSN:00304026
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304026_v116_n7_p343_Skigin

Referencias:

  • Berenger, J.P., A perfectly matched layer for the absorption of electromagnetic waves (1994) J. Comput. Phys., 114, pp. 185-200
  • Berenger, J.P., Three-dimensional perfectly matched layer for the absorption of electromagnetic waves (1996) J. Comput. Phys., 127, pp. 363-379
  • Sacks, Z.S., Kingsland, D.M., Lee, R., Lee, J.F., A perfectly matched anisotropic absorber for use as an absorbing boundary condition (1995) IEEE Trans. Antennas Propag., 43, pp. 1460-1463
  • Jeong-Ki, H., Seok-Bong, H., Han-Youl, R., Yong-Hee, L., Resonant modes of two-dimensional photonic bandgap cavities determined by the finite-element method and by use of the anisotropic perfectly matched layer boundary condition (1998) J. Opt. Soc. Am. B, 15, pp. 2316-2324
  • Wenbo, S., Qiang, F., Zhizhang, C., Finite-difference time-domain solution of light scattering by dielectric particles with a perfectly matched layer absorbing boundary condition (1999) Appl. Opt., 38, pp. 3141-3151
  • Merle Elson, J., Tran, P., R-matrix propagator with perfectly matched layers for the study of integrated optical components (1999) J. Opt. Soc. Am. A, 16, pp. 2983-2989
  • Merle Elson, J., Propagation in planar waveguides and the effects of wall roughness (2001) Opt. Express, 9, pp. 461-475
  • Skigin, D.C., Depine, R.A., Use of an anisotropic absorber for simulating electromagnetic scattering by a perfectly conducting wire (2003) Optik, 114 (5), pp. 229-233
  • Rogier, H., De Zutter, D., Convergence behavior and acceleration of the Berenger and leaky modes series composing the 2-D Green's function for the microstrip substrate (2002) IEEE Trans. Microwave Theory Tech., 50, pp. 1696-1704
  • Rogier, H., De Zutter, D., A fast technique based on perfectly matched layers for the full-wave solution of 2-D dispersive microstrip lines (2003) IEEE Trans. Comput. Aided Design Integrated Circuits Systems, 22, pp. 1650-1656
  • Rogier, H., De Zutter, D., A fast converging series expansion for the 2-D periodic Green's function based on perfectly matched layers (2004) IEEE Trans. Microwave Theory Tech., 52, pp. 1199-1206
  • Gedney, S.D., An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices (1996) IEEE Trans. Antennas Propag., 44, pp. 1630-1639
  • Mekis, A., Fan, S., Joannopoulos, J.D., Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides (1999) IEEE Microwave Guided Wave Lett., 9, pp. 502-504
  • Tischler, T., Heinrich, W., The perfectly matched layer as lateral boundary in finite-difference transmission-line analysis (2000) IEEE Trans. Microwave Theory Tech., 48, pp. 2249-2253
  • Derudder, H., De Zutter, D., Olyslager, F., Analysis of waveguide discontinuities using perfectly matched layers (1998) Electron. Lett., 34, pp. 2138-2140
  • Derudder, H., Olyslager, F., De Zutter, D., An efficient series expansion for the 2D Green's function of a microstrip substrate using perfectly matched layers (1999) IEEE Microwave Guided Wave Lett., 9, pp. 505-507
  • Derudder, H., Olyslager, F., De Zutter, D., Van Den Berghe, S., Efficient mode-matching analysis of discontinuities in finite planar substrates using perfectly matched layers (2001) IEEE Trans. Antennas Propag., 49, pp. 185-195
  • Rogier, H., De Zutter, D., Berenger and leaky modes in microstrip substrates terminated by a perfectly matched layer (2001) IEEE Trans. Microwave Theory Tech., 49, pp. 712-715
  • Olyslager, F., Derudder, H., Series representation of Green dyadics for layered media using PMLs (2003) IEEE Trans. Antennas Propag., 51, pp. 2319-2326
  • Knop, K., Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves (1978) J. Opt. Soc. Am., 68, p. 1206
  • Peng, S.T., Tamir, T., Bertoni, H.L., Theory of periodic dielectric waveguides (1975) IEEE Trans. Microwave Theory Tech., MTT-23, pp. 123-133
  • Botten, L.C., Craig, M.S., McPhedran, R.C., Adams, J.L., Andrewartha, J.R., The dielectric lamellar diffraction grating (1981) Opt. Acta, 28, pp. 413-428
  • Peng, S.T., Rigorous formulation of scattering and guidance by dielectric grating waveguides: General case of oblique incidence (1989) J. Opt. Soc. Am. A, 6, pp. 1869-1883
  • Li, L., A modal analysis of lamellar diffraction gratings in conical mountings (1993) J. Mod. Opt., 40, pp. 553-573
  • Miller, J.M., Turunen, J., Noponen, E., Vasara, A., Taghizadeh, M.R., Rigorous modal theory for multiply grooved lamellar gratings (1994) Opt. Commun., 111, pp. 526-535
  • Kuittinen, M., Turunen, J., Exact-eigenmode model for index-modulated apertures (1996) J. Opt. Soc. Am. A, 13, pp. 2014-2020
  • Li, L., Multilayer modal method for diffraction gratings of arbitrary profile (1993) Depth and Permittivity, J. Opt. Soc. Am. A, 10, pp. 2581-2591
  • Depine, R.A., Skigin, D.C., Multilayer modal method for diffraction from dielectric inhomogeneous apertures (1998) J. Opt. Soc. Am. A, 15, pp. 675-683
  • Skigin, D.C., Depine, R.A., Modal theory for diffraction from a dielectric aperture with arbitrarily shaped corrugations (1998) Opt. Commun., 149 (1-3), pp. 117-126
  • Skigin, D.C., Depine, R.A., Scattering by lossy inhomogeneous apertures in thick metallic screens (1998) J. Opt. Soc. Am. A, 15, pp. 2089-2096
  • Olyslager, F., Discretization of continuous spectra based on perfectly matched layers (2004) SIAM J. Appl. Math., 64, pp. 1408-1433
  • Knockaert, L.F., De Zutter, D., On the completeness of eigenmodes in a parallel plate waveguide with a perfectly matched layer termination (2002) IEEE Trans. Antennas Propag., 50, pp. 1650-1653
  • Li, L., Multilayer-coated diffraction gratings: Differential method of Chandezon et al. revisited (1994) J. Opt. Soc. Am. A, 11, pp. 2816-2828
  • Li, L., Bremmer series, R-matrix propagation algorithm, and numerical modelling of diffraction gratings (1994) J. Opt. Soc. Am. A, 11, pp. 2829-2836
  • Montiel, F., Nevière, M., Differential theory of gratings: Extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm (1994) J. Opt. Soc. Am. A, 11, pp. 3241-3250
  • Jackson, J.D., (1975) Classical Electrodynamics, , second ed. Wiley New York
  • Cole, R.H., (1968) Theory of Ordinary Differential Equations, , Appleton-Century-Crofts New York
  • Brekhovskikh, L.M., (1960) Waves in Layered Media, , Academic Press New York
  • Depine, R.A., Skigin, D.C., Scattering from metallic surfaces having a finite number of rectangular grooves (1994) J. Opt. Soc. Am. A, 11, pp. 2844-2850

Citas:

---------- APA ----------
(2005) . Eigenmodes of index-modulated layers with lateral PMLs. Optik, 116(7), 343-350.
http://dx.doi.org/10.1016/j.ijleo.2005.02.007
---------- CHICAGO ----------
Skigin, D.C. "Eigenmodes of index-modulated layers with lateral PMLs" . Optik 116, no. 7 (2005) : 343-350.
http://dx.doi.org/10.1016/j.ijleo.2005.02.007
---------- MLA ----------
Skigin, D.C. "Eigenmodes of index-modulated layers with lateral PMLs" . Optik, vol. 116, no. 7, 2005, pp. 343-350.
http://dx.doi.org/10.1016/j.ijleo.2005.02.007
---------- VANCOUVER ----------
Skigin, D.C. Eigenmodes of index-modulated layers with lateral PMLs. Optik. 2005;116(7):343-350.
http://dx.doi.org/10.1016/j.ijleo.2005.02.007