Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Diffraction of electromagnetic plane waves by the gratings made by periodically corrugating the exposed planar boundaries of homogeneous, isotropic, linear dielectric-magnetic half-spaces is examined. The phase velocity vector in the diffracting material can be either co-parallel or anti-parallel to the time-averaged Poynting vector, thereby allowing for the material to be classified as of either the positive- or the negative-phase velocity (PPV or NPV) type. Three methods used for analyzing dielectric gratings - the Rayleigh-hypothesis method, a perturbative approach, and the C formalism - are extended here to encompass NPV gratings by a careful consideration of field representation inside the refracting half-space. Corrugations of both symmetric as well as asymmetric shapes are studied, as also the diversity of grating response to the linear polarization states of the incident plane wave. The replacement of PPV grating by its NPV analog affects only nonspecular diffraction efficiencies when the corrugations are shallow, and the effect on specular diffraction efficiencies intensifies as the corrugations deepen. Whether the type of the refracting material is NPV or PPV is shown to affect surface wave propagation as well as resonant excitation of surface waves. © 2005 Elsevier GmbH. All rights reserved.

Registro:

Documento: Artículo
Título:Diffraction gratings of isotropic negative-phase velocity materials
Autor:Depine, R.A.; Lakhtakia, A.
Filiación:Grupo De Electromagnetismo Aplicado, Departamento De Física, Fac. De Cie. Exact. Y Nat., Univ. D., Pabellón I, 1428 Buenos Aires, Argentina
Compl. and Theor. Mat. Sci. Group, Dept. of Eng. Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812, United States
Palabras clave:Grating; Negative-phase velocity; Nonspecular diffraction; Numerical techniques; Surface waves; Boundary value problems; Dielectric devices; Electromagnetism; Image analysis; Lenses; Light polarization; Light reflection; Light refraction; Magnetic materials; Maxwell equations; Optics; Perturbation techniques; Surface waves; Vectors; Helmholtz equations; ii; Negative-phase velocity materials; Nonspecular diffraction; Numerical techniques; Diffraction gratings
Año:2005
Volumen:116
Número:1
Página de inicio:31
Página de fin:43
DOI: http://dx.doi.org/10.1016/j.ijleo.2004.11.004
Título revista:Optik
Título revista abreviado:Optik
ISSN:00304026
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304026_v116_n1_p31_Depine

Referencias:

  • Parker, A.R., 515 Million years of structural colours (2000) J. Opt. A: Pure Appl. Opt., 2, pp. R15-R28
  • Harrison, G.R., The production of diffraction gratings, I: Development of the ruling art (1949) J. Opt. Soc. Am., 39, pp. 413-426
  • Maystre, D., (1992) Selected Papers on Diffraction Gratings, , SPIE Optical Engineering Press, Bellingham, WA, USA
  • Shelby, R.A., Smith, D.R., Schultz, S., Experimental verification of a negative index of refraction (2001) Science, 292, pp. 77-79
  • Lakhtakia, A., McCall, M.W., Weiglhofer, W.S., Brief overview of recent developments on negative phase-velocity mediums alias left-handed materials (2002) Arch. Elektron. Übertrag., 56, pp. 407-410
  • Pendry, J.B., Focus issue: Negative refraction and metamaterials (2003) Opt. Express, 11, pp. 639-760
  • Kwan, A., Dudley, J., Lantz, E., Who really discovered Snell's law?. The law of refraction can be traced back to the 10th century Iraqi scientist Ibn Sahl, and the correct spelling of Snell's last name is Snel (2002) Phys. World, 15 (4), p. 64
  • Lakhtakia, A., Varadan, V.V., Varadan, V.K., Scattering by periodic achiral-chiral interfaces (1989) J. Opt. Soc. Am. A, 6, pp. 1675-1681
  • Lester, M., Depine, R.A., Reflection of electromagnetic waves at the corrugated boundary between permeable dielectrics (1994) J. Phys. D: Appl. Phys., 27, pp. 2451-2456
  • Lakhtakia, A., On planewave remittances and Goos-Hänchen shifts of planar slabs with negative real permittivity and permeability (2003) Electromagnetics, 23, pp. 71-75
  • Depine, R.A., Lakhtakia, A., A new condition to identify isotropic dielectric-magnetic materials displaying negative phase velocity (2004) Microwave Opt. Technol. Lett., 41, pp. 315-316. , http://arXiv.org/abs/physics/0311029
  • Born, M., Wolf, E., (1980) Principles of Optics, , sixth ed. Pergamon Press Oxford, United Kingdom
  • Waterman, P.C., Scattering by periodic surfaces (1975) J. Acoust. Soc. Am., 57, pp. 791-802
  • Bohren, C.F., Huffman, D.R., (1983) Absorption and Scattering of Light by Small Particles, , Wiley New York, NY, USA
  • Hu, B.Y.-K., Kramers-Kronig in two lines (1989) Am. J. Phys., 57, p. 821
  • Van Den Berg, P.M., Reflection by a grating: Rayleigh methods (1981) J. Opt. Soc. Am., 71, pp. 1224-1229
  • Rayleigh, L., On the dynamical theory of gratings (1907) Proc. R. Soc. London A, 79, pp. 399-416
  • Chuang, S.-L., Kong, J.A., Scattering from periodic surfaces (1981) Proc. IEEE, 69, pp. 1132-1144
  • Chandezon, J., Maystre, D., Raoult, G., A new theoretical method for diffraction gratings and its numerical application (1980) J. Opt. (Paris), 11, pp. 235-241
  • Li, L., Chandezon, J., Granet, G., Plumey, J., Rigorous and efficient grating-analysis method made easy for optical engineers (1999) Appl. Opt., 38, pp. 304-313
  • Maradudin, A., Interaction of surface polaritons and plasmons with surface roughness (1982) Surface Polaritons, , V. Agranovich D.L. Mills North-Holland Amsterdam, The Netherlands
  • Lester, M., Depine, R.A., Scattering of electromagnetic waves at the corrugated interface between index-matched media (1996) Opt. Commun., 132, pp. 135-143
  • Strang, G., (1986) Introduction to Applied Mathematics, , Wellesley Cambridge Press Wellesley, MA, USA
  • Millar, R.F., On the Rayleigh assumption in scattering by a periodic surface: II (1971) Proc. Cambridge Philos. Soc., 69, pp. 217-225
  • Hill, N.R., Celli, V., Limits of convergence of the Rayleigh method for surface scattering (1978) Phys. Rev. B, 17, pp. 2478-2481
  • Depine, R.A., Gigli, M.L., Diffraction from corrugated gratings made with uniaxial crystals: Rayleigh methods (1994) J. Mod. Opt., 41, pp. 695-715
  • Lopez, C., Yndurain, F., García, N., Iterative series for calculating the scattering of waves from a hard corrugated surface (1978) Phys. Rev. B, 18, pp. 970-972
  • Li, L., Chandezon, J., Improvement of the coordinate transformation method for surface-relief gratings with sharp edges (1996) J. Opt. Soc. Am. A, 13, pp. 2247-2255
  • Chandezon, J., Dupuis, M., Cornet, G., Maystre, D., Multicoated gratings: A differential formalism applicable in the entire optical region (1982) J. Opt. Soc. Am., 72, pp. 839-846
  • Li, L., On the matrix truncation in the modal methods of diffraction gratings (1998) 19th Topical Meeting of the European Optical Society, , paper presented at Electromagnetic Optics Hyères, France, 7-9 September
  • Popov, E., Mashev, L., Conical diffraction mounting generalization of a rigorous differential method (1986) J. Opt. (Paris), 17, pp. 175-180
  • Popov, E., Neviére, M., Surface-enhanced second harmonics generation in nonlinear corrugated dielectrics: New theoretical approaches (1994) J. Opt. Soc. Am. B, 11, pp. 1555-1564
  • Harris, J.B., Preist, T.W., Sambles, J.R., Differential formalism for multilayer diffraction gratings made with uniaxial materials (1995) J. Opt. Soc. Am. A, 12, pp. 1965-1973
  • Inchaussandague, M.E., Depine, R.A., Polarization conversion from diffraction gratings made of uniaxial cyrstals (1996) Phys. Rev. E, 54, pp. 2899-2911
  • Inchaussandague, M.E., Depine, R.A., Rigorous vector theory for diffraction gratings made of biaxial crystals (1997) J. Mod. Opt., 44, pp. 1-10
  • Granet, G., Chandezon, J., Coudert, O., Extension of the C method to nonhomogeneous media: Application to nonhomogeneous layers with parallel modulated faces and to inclined lamellar gratings (1997) J. Opt. Soc. Am. A, 14, pp. 1576-1582
  • Granet, G., Analysis of diffraction by crossed gratings using a non-orthogonal coordinate system (1995) Pure Appl. Opt., 4, pp. 777-793
  • Lakhtakia, A., Conjugation symmetry in linear electromagnetism in extension of materials with negative real permittivity and permeability scalars (2004) Microwave Opt. Technol. Lett., 40, pp. 160-161
  • Ruppin, R., Surface polaritons of a left-handed medium (2000) Phys. Lett. A, 277, pp. 61-64
  • Shadrivov, I., Sukhorukov, A., Kivshar, Y., Zharov, A., Boardman, A., Egan, P., Nonlinear surface waves in left-handed materials (2004) Phys. Rev. E, 69, pp. 9-0166171
  • Boardman, A.D., (1982) Electromagnetic Surface Modes, , Wiley, New York, NY, USA
  • Raether, H., (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings, , Springer Heidelberg, Germany

Citas:

---------- APA ----------
Depine, R.A. & Lakhtakia, A. (2005) . Diffraction gratings of isotropic negative-phase velocity materials. Optik, 116(1), 31-43.
http://dx.doi.org/10.1016/j.ijleo.2004.11.004
---------- CHICAGO ----------
Depine, R.A., Lakhtakia, A. "Diffraction gratings of isotropic negative-phase velocity materials" . Optik 116, no. 1 (2005) : 31-43.
http://dx.doi.org/10.1016/j.ijleo.2004.11.004
---------- MLA ----------
Depine, R.A., Lakhtakia, A. "Diffraction gratings of isotropic negative-phase velocity materials" . Optik, vol. 116, no. 1, 2005, pp. 31-43.
http://dx.doi.org/10.1016/j.ijleo.2004.11.004
---------- VANCOUVER ----------
Depine, R.A., Lakhtakia, A. Diffraction gratings of isotropic negative-phase velocity materials. Optik. 2005;116(1):31-43.
http://dx.doi.org/10.1016/j.ijleo.2004.11.004