Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present the design and the experimental implementation of a new imaging set-up, based on Liquid Crystal technology, able to obtain super-resolved polarimetric images of polarimetric samples when the resolution is detector limited. The proposed set-up is a combination of two modules. One of them is an imaging Stokes polarimeter, based on Ferroelectric Liquid Crystal cells, which is used to analyze the polarization spatial distribution of an incident beam. The other module is used to obtain high resolved intensity images of the sample in an optical system whose resolution is mainly limited by the CCD pixel geometry. It contains a calibrated Parallel Aligned Liquid Crystal on Silicon display employed to introduce controlled linear phases. As a result, a set of different low resolved intensity images with sub-pixel displacements are captured by the CCD. By properly combining these images and after applying a deconvolution process, a super-resolved intensity image of the object is obtained. Finally, the combination of the two different optical modules permits to employ super-resolved images during the polarimetric data reduction calculation, leading to a final polarization image with enhanced spatial resolution. The proposed optical set-up performance is implemented and experimentally validated by providing super-resolved images of an amplitude resolution test and a birefringent resolution test. A significant improvement in the spatial resolution (by a factor of 1.4) of the obtained polarimetric images, in comparison with the images obtained with the regular imaging system, is clearly observed when applying our proposed technique. © 2014 Elsevier B.V.

Registro:

Documento: Artículo
Título:Polarization imaging with enhanced spatial resolution
Autor:Peinado, A.; Lizana, A.; Iemmi, C.; Campos, J.
Filiación:Departament de Física, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
Departamento de Física, FCEN, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
Palabras clave:Liquid-crystal devices; Polarimetry; Spatial light modulators; Stokes vector; Superresolution; Light modulators; Liquid crystal displays; Liquid crystals; Liquids; Nematic liquid crystals; Optical systems; Pixels; Polarimeters; Polarization; Ferroelectric liquid crystal; Liquid crystal devices; Liquid crystal on silicon displays; Liquid crystal technology; Spatial light modulators; Stokes vector; Sub-pixel displacements; Super resolution; Image resolution
Año:2015
Volumen:338
Página de inicio:95
Página de fin:100
DOI: http://dx.doi.org/10.1016/j.optcom.2014.09.079
Título revista:Optics Communications
Título revista abreviado:Opt Commun
ISSN:00304018
CODEN:OPCOB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v338_n_p95_Peinado

Referencias:

  • Zalevsky, Z., Mendlovic, D., (2003) Optical Superresolution, , Springer New York
  • Tatem, A., Super-resolution land cover pattern prediction using a Hopfield neural network (2002) Remote Sens. Environ., 79, pp. 1-14
  • Greenspan, H., Super-resolution in medical imaging (2008) Comput. J., 52, pp. 43-63
  • Lukosz, W., Optical systems with resolving powers exceeding the classical limit II (1967) J. Opt. Soc. Am., 57, pp. 932-939
  • Mico, V., Zalevsky, Z., Garcia-Martinez, P., Garcia, J., Single-step superresolution by interferometric imaging (2004) Opt. Express, 12, p. 2589
  • Hussain, A., Martínez, J.L., Lizana, A., Campos, J., Super resolution imaging achieved by using on-axis interferometry based on a Spatial Light Modulator (2013) Opt. Express, 21, pp. 9615-9623
  • Calabuig, A., Micó, V., Garcia, J., Zalevsky, Z., Ferreira, C., Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing (2011) Opt. Lett., 36, pp. 885-887
  • Fiete, R.D., Image quality and λfN/p for remote sensing systems (1999) Opt. Eng., 38 (7), pp. 1229-1240
  • Park, S.C., Park, M.K., Kang, M.G., Super-resolution image reconstruction: A technical overview (2003) IEEE Signal Process. Mag., 20 (3), pp. 21-36
  • Fruchter, A.S., Hook, R.N., A novel image reconstruction method applied to deep Hubble space telescope images (1997) Proc. SPIE, 3164, pp. 120-125
  • Alam, M.S., Bognar, J.G., Cain, S., Yasuda, B.J., Fast registration and reconstruction of aliased low-resolution frames by use of a modified maximum-likelihood approach (1998) Appl. Opt., 37, pp. 1319-1328
  • Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P., Fast and robust multiframe super resolution (2004) IEEE Trans. Image Process, 13, pp. 1327-1344
  • Stark, H., Oskoui, P., High-resolution image recovery from image-plane arrays, using convex projections (1989) J. Opt. Soc. Am. A, 6, pp. 1715-1726
  • Tekalp, A.M., Ozkan, M.K., Sezan, M.I., High-resolution Image Reconstruction from Lower-resolution Image Sequences and Space Varying Image Restoration (1992) Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3, pp. 169-172
  • Ur, H., Gross, D., Improved resolution from sub-pixel shifted pictures, CVGIP (1992) Gr. Models Image Process., 54, pp. 181-186
  • Komatsu, T., Aizawa, K., Igarashi, T., Saito, T., Signal-processing based method for acquiring very high resolution image with multiple cameras and its theoretical analysis (1993) Proc. Inst. Electr. Eng., 140 (1), pp. 19-25
  • Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J., Hanson, R., Super-resolved surface reconstruction from multiple images, in Maximum Entropy and Bayesian Methods (1996) Springer Netherlands, Santa Barbara, pp. 293-308
  • Hardie, R.C., Barnard, K.J., Armstrong, E.E., Joint MAP registration and high-resolution image estimation using a sequence of undersampled images (1997) IEEE Trans. Image Process., 6, pp. 1621-1633
  • Solomon, J., Zalevsky, Z., Mendlovic, D., Geometric superresolution by code division multiplexing (2005) Appl. Opt., 44, p. 32
  • Shemer, A., Mendlovic, D., Zalevsky, Z., Garcia, J., Martinez, P.G., Superresolving optical system with time multiplexing and computer decoding (1999) Appl. Opt., 38, p. 7245
  • Borkowski, A., Zalevsky, Z., Javidi, B., Geometrical superresolved imaging using nonperiodic spatial masking (2009) J. Opt. Soc. Am. A, 26, p. 589
  • Pierangelo, A., Manhas, S., Benali, A., Fallet, C., Totobenazara, J.-L., Antonelli, M.-R., Multispectral Mueller polarimetric imaging detecting residual cancer and cancer regression after neoadjuvant treatment for colorectal carcinomas (2013) J. Biomed. Opt., 18, p. 046014
  • Twietmeyer, K.M., Chipman, R.A., Elsner, A.E., Zhao, Y., Vannasdale, D., Mueller matrix retinal imager with optimized polarization conditions (2008) Opt. Express, 16, p. 21339
  • Pust, N.J., Shaw, J.A., Dual-field imaging polarimeter using liquid crystal variable retarders (2006) Appl. Opt., 45, p. 5470
  • Gendre, L., Foulonneau, A., Bigué, L., Imaging linear polarimetry using a single ferroelectric liquid crystal modulator (2010) Appl. Opt., 49, p. 4687
  • Rodríguez-Herrera, O.G., Lara, D., Dainty, C., Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields (2010) Opt. Express, 18, pp. 5609-5628
  • Macias-Romero, C., Foreman, M.R., Munro, P.R.T., Török, P., Confocal polarization imaging in high-numerical-aperture space (2014) Opt. Lett., 39, p. 2322
  • Lizana, A., Martín, N., Estapé, M., Fernández, E., Moreno, I., Márquez, A., Iemmi, C., Yzuel, M.J., Influence of the incident angle in the performance of liquid crystal on silicon displays (2009) Opt. Express, 17 (10), pp. 8491-8505
  • Sohail, M., Lizana, A., Campos, J., Super-resolution imaging technique based on a liquid crystal on silicon display: Increase of charge-coupled device resolution limit (2013) Ópt. Pura y Apl., 46, pp. 223-230
  • Russ, J.C., (2011) The Image Processing Handbook, , CRC Press Boca Raton
  • González, R.C., Woods, R.E., (2008) Digital Image Processing, , Pearson Prentice Hall New Jersey
  • Peinado, A., Lizana, A., Campos, J., Optimization and tolerance analysis of a polarimeter with ferroelectric liquid crystals (2013) Appl. Opt., 52, pp. 5748-5757
  • Goldstein, D.H., Chipman, R.A., Error analysis of a Mueller matrix polarimeter (1990) J. Opt. Soc. Am. A, 7, p. 693
  • Martínez, A., Beaudoin, N., Moreno, I., Sánchez-López, M.D.M., Velásquez, P., Optimization of the contrast ratio of a ferroelectric liquid crystal optical modulator (2006) J. Opt. A Pure Appl. Opt., 8, pp. 1013-1018
  • Taylor, P., (1996) Theory and Applications of Numerical Analysis, , second ed. Academic Press London
  • Tyo, J.S., Noise equalization in Stokes parameter images obtained by use of variable-retardance polarimeters (2000) Opt. Lett., 25 (16), pp. 1198-1200
  • Hussain, A., Martinez, J.L., Campos, J., Holographic superresolution using spatial light modulator (2013) J. Eur. Opt. Soc. Rapid Publ., 8, p. 13007
  • Compain, E., Poirier, S., Drevillon, B., General and self-consistent method for the calibration of polarization modulators, polarimeters, and Mueller-matrix ellipsometers (1999) Appl. Opt., 38, pp. 3490-3502
  • Goudail, F., Optimization of the contrast in active Stokes images (2009) Opt. Lett., 34, pp. 121-123

Citas:

---------- APA ----------
Peinado, A., Lizana, A., Iemmi, C. & Campos, J. (2015) . Polarization imaging with enhanced spatial resolution. Optics Communications, 338, 95-100.
http://dx.doi.org/10.1016/j.optcom.2014.09.079
---------- CHICAGO ----------
Peinado, A., Lizana, A., Iemmi, C., Campos, J. "Polarization imaging with enhanced spatial resolution" . Optics Communications 338 (2015) : 95-100.
http://dx.doi.org/10.1016/j.optcom.2014.09.079
---------- MLA ----------
Peinado, A., Lizana, A., Iemmi, C., Campos, J. "Polarization imaging with enhanced spatial resolution" . Optics Communications, vol. 338, 2015, pp. 95-100.
http://dx.doi.org/10.1016/j.optcom.2014.09.079
---------- VANCOUVER ----------
Peinado, A., Lizana, A., Iemmi, C., Campos, J. Polarization imaging with enhanced spatial resolution. Opt Commun. 2015;338:95-100.
http://dx.doi.org/10.1016/j.optcom.2014.09.079