Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The diffraction of temporally Gaussian shaped light pulses is theoretically studied by means of the aberrationless approach, a theoretical technique previously used for spatially bounded beams of unlimited time extension and which is extended here to time domain. We consider linear interfaces, that is, we assume that the spectral components of the vector field in the diffracted pulse are linearly related with the spectral components of the vector field in the incident pulse. In our analysis pulse deformations are described in terms of the following effects: time delay, focal displacement, waist modification and change in propagation velocity. Expressions for these effects, the time domain analogues of those already reported in the spatial domain, are given and compared with those obtained using the stationary phase method. The theory is used to calculate deformations of a short light pulse at a flat interface near conditions of total internal reflection. © 2001 Published by Elsevier Science B.V.

Registro:

Documento: Artículo
Título:Aberrationless approach for diffraction of pulses at linear interfaces
Autor:Bonomo, N.E.; Depine, R.A.
Filiación:Grupo De Electromagnetismo Aplicado, Departamento De Física, Pabellón I, 1428 Buenos Aires, Argentina
Palabras clave:Aberrationless approach; Goos-Hänchen effect; Linear interfaces; Pulse diffraction; Interfaces (materials); Light propagation; Temporally Gaussian shaped light pulses; Diffraction
Año:2001
Volumen:190
Número:1-6
Página de inicio:19
Página de fin:27
DOI: http://dx.doi.org/10.1016/S0030-4018(01)01062-8
Título revista:Optics Communications
Título revista abreviado:Opt Commun
ISSN:00304018
CODEN:OPCOB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00304018_v190_n1-6_p19_Bonomo

Referencias:

  • Goos, F., Hänchen, H., Ein neuer und fundamentaler versuch zur totalreflektion (1947) Ann. Phys., 1, pp. 333-346
  • Carniglia, C., Brownstein, K., Focal shift and ray model for total internal reflection (1977) J. Opt. Soc. Am., 67, pp. 121-122
  • White, I., Snyder, A., Pask, C., Directional change of beams undergoing partial reflection (1977) J. Opt. Soc. Am., 67, pp. 703-705
  • Kozaki, S., Sakurai, H., Characteristics of a Gaussian beam at a dielectric interface (1978) J. Opt. Soc. Am., 68, pp. 508-514
  • Greffet, J., Baylard, C., Nonspecular reflection from a lossy dielectric (1993) Opt. Lett., 18, pp. 1129-1131
  • Kriezis, E.E., Pandelakis, P.K., Papagiannakis, A.G., Diffraction of a Gaussian beam from a periodic planar screen (1994) J. Opt. Soc. Am. A, 11, pp. 630-636
  • Nasalski, W., Longitudinal and transverse effects of nonspecular reflection (1996) J. Opt. Soc. Am. A, 13, pp. 172-181
  • Depine, R.A., Bonomo, N.E., Spatial modifications of Gaussian beams reflected at isotropic-uniaxial interfaces (1995) J. Mod. Opt., 42, pp. 2401-2412
  • Depine, R.A., Bonomo, N.E., Goos-Hänchen lateral shift for Gaussian beams reflected at achiral-chiral interfaces (1996) Optik, 103, pp. 37-42
  • Riesz, R., Simon, R., Reflection of a Gaussian beam from a dielectric slab (1985) J. Opt. Soc. Am. A, 2, pp. 1809-1817
  • Hsue, C.W., Tamir, T., Lateral displacement and distortion of beams incident upon a transmitting-layer configuration (1985) J. Opt. Soc. Am. A, 2 (6), pp. 978-986
  • Tamir, T., Nonspecular phenomena in beam fields reflected by multilayered media (1986) J. Opt. Soc. Am. A, 3, pp. 558-565
  • Zhang, S., Tamir, T., Spatial modifications of Gaussian beams diffracted by reflection gratings (1989) J. Opt. Soc. Am. A, 6, pp. 1368-1381
  • Greffet, J., Baylard, C., Nonspecular astigmatic reflection of a 3D gaussian beam on an interface (1992) Opt. Commun., 93, pp. 271-276
  • Peng, S., Michael Morris, G., Resonant scattering from two-dimensional gratings (1996) J. Opt. Soc. Am. A, 13, pp. 993-1005
  • Maddalena, P., Abbate, G., Mormile, P., Pierattini, G., Santamato, E., Experimental investigation of lateral wave contribution to the shift of a reflected beam at surface resonance (1993) Opt. Commun., 96, pp. 221-224
  • Cowan, J., Aničin, B., Longitudinal and transverse displacements of a bounded microwave beam at total internal reflection (1977) J. Opt. Soc. Am., 67, pp. 1307-1314
  • Green, M., Kirkby, P., Timsit, R.S., Experimental results on the longitudinal displacement of light beams neal total reflection (1973) Phys. Lett., 45 A, pp. 259-260
  • Rhodes, D., Carniglia, C., Measurement of the Goos-Hänchen shift at grazing incidence using Lloyd's mirror (1977) J. Opt. Soc. Am., 67, pp. 679-683
  • Costa de Beauregard, O., Imbert, C., Quantized longitudinal and transverse shifts associated with total internal reflection (1973) Phys. Rev. D, 7, pp. 3555-3563
  • Pfleghaar, E., Marseille, A., Weiss, A., Quantitative investigation of the effect of resonant absorbers on the Goos-Hänchen shift (1993) Phys. Rev. Lett., 70, pp. 2281-2284
  • Akylas, V., Kaur, J., Knasel, T., Measurement of the longitudinal shift of radiation at total internal reflection by microwave techniques (1976) Am. J. Phys., 44, pp. 77-80
  • Costa de Beauregard, O., Imbert, C., Levy, L., Observation of shifts in total reflection of a light beam by a multilayered structure (1977) Phys. Rev. D, 7, pp. 3553-3562
  • Renard, R., Total reflection: A new evaluation of the Goos-Hänchen shift (1964) J. Opt. Soc. Am., 54, pp. 1190-1197
  • Mâaza, M., Pardo, B., On the possibility to observe the longitudinal Goos-Hänchen shift with cold neutrons (1997) Opt. Commun., 142, pp. 84-90
  • Artmann, K., Berechnung der sietenversetzung des total reflektierten strahles (1948) Ann. Phys., 2, pp. 87-102
  • Bonomo, N.E., Gigli, M.L., Depine, R.A., Lateral displacement of a beam incident from a uniaxial medium onto a metal (1997) J. Mod. Opt., 44, pp. 1393-1408
  • Bonomo, N., Depine, R., Nonspecular reflection of ordinary and extraordinary beams in uniaxial media (1997) J. Opt. Soc. Am. A, 14, p. 1402
  • Chiu, K.W., Quinn, J.J., On the Goos-Hänchen effect: A simple example of a time delay scattering process (1972) Am. J. Phys., 40, p. 1847
  • Fedoseyev, V.G., Energy motion on total internal reflection of an electromagnetic wave packet (1986) J. Opt. Soc. Am. A, 3 (6), p. 826
  • Yasumoto, K., Oishi, Y., A new evaluation of the Goos-Hänchen shift and associated time delay (1983) J. Appl. Phys., 54, p. 2170
  • Güther, R., Kleemann, B.H., Shift and shape of grating diffracted beams (1998) J. Mod. Opt., 45, p. 1375
  • Gradshteyn, I., Ryzhik, I., (1979) Table of Integrals, Series and Products, p. 307. , Academic Press, New York
  • (1995) Handbook of Optics, sponsored by the Optical Society of America; Michael Bass editor in chief, second ed. vol. II, Devices, Measurements & Properties, 2. , McGraw Hill, New York

Citas:

---------- APA ----------
Bonomo, N.E. & Depine, R.A. (2001) . Aberrationless approach for diffraction of pulses at linear interfaces. Optics Communications, 190(1-6), 19-27.
http://dx.doi.org/10.1016/S0030-4018(01)01062-8
---------- CHICAGO ----------
Bonomo, N.E., Depine, R.A. "Aberrationless approach for diffraction of pulses at linear interfaces" . Optics Communications 190, no. 1-6 (2001) : 19-27.
http://dx.doi.org/10.1016/S0030-4018(01)01062-8
---------- MLA ----------
Bonomo, N.E., Depine, R.A. "Aberrationless approach for diffraction of pulses at linear interfaces" . Optics Communications, vol. 190, no. 1-6, 2001, pp. 19-27.
http://dx.doi.org/10.1016/S0030-4018(01)01062-8
---------- VANCOUVER ----------
Bonomo, N.E., Depine, R.A. Aberrationless approach for diffraction of pulses at linear interfaces. Opt Commun. 2001;190(1-6):19-27.
http://dx.doi.org/10.1016/S0030-4018(01)01062-8