Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Small ectotherms, such as insects, with high surface area-to-volume ratios are usually at risk of dehydration in arid environments. We hypothesize that desiccation tolerance in insects could be reflected in their distribution, which is limited by areas with high relative values of water vapor pressure deficit (VPD) (e.g., hot and dry). The main goal of this study was to explore whether incorporation of eco-physiological traits such as desiccation tolerance in arid environments can improve our understanding of species distribution models (SDM). We use a novel eco-physiological approach to understand the distribution and the potential overlap with their fundamental niche in triatomine bugs, Chagas disease vectors. The desiccation dimension for T. infestans, T. delpontei, T. dimidiata, and T. sordida niches seems to extend to very dry areas. For T. vitticeps, xeric areas seem to limit the geographical range of their realized niche. The maximum VPD limits the western and southern distributions of T. vitticeps, T. delpontei, and T. patagonica. All species showed high tolerance to desiccation with survival times (35 °C-RH ~ 15%) ranging from 24 to 38 days, except for T. dimidiata (9 days), which can be explained by a higher water-loss rate, due to a higher cuticular permeability along with a higher critical water content. This approach indicates that most of these triatomine bugs could be exploiting the dryness dimension of their fundamental niche. Incorporating such species-specific traits in studies of distribution, range, and limits under scenarios of changing climate could enhance predictions of movement of disease-causing vectors into novel regions. © 2017, Springer-Verlag GmbH Germany.

Registro:

Documento: Artículo
Título:Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors
Autor:de la Vega, G.J.; Schilman, P.E.
Filiación:Laboratorio de Eco-fisiología de Insectos, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biodiversidad y Biología Experimental y Aplicada-IBBEA, CONICET-UBA, Ciudad Universitaria, Pabellón II, Buenos Aires, C1428EHA, Argentina
Grupo de Ecología de Poblaciones de Insectos (GEPI), INTA EEA Bariloche, Rio Negro, Argentina
Palabras clave:Chagas disease vectors; Desiccation tolerance; Physiological ecology; SDM; arid environment; Chagas disease; climate change; dehydration; desiccation; disease vector; ecological modeling; ecophysiology; geographical distribution; insect; niche; niche overlap; tolerance; vapor pressure; Hexapoda; water; animal; Chagas disease; classification; dehydration; insect vector; metabolism; Mexico; physiology; Rhodnius; South America; species difference; transmission; Triatoma; Animals; Chagas Disease; Dehydration; Insect Vectors; Mexico; Rhodnius; South America; Species Specificity; Triatoma; Water
Año:2017
Volumen:185
Número:4
Página de inicio:607
Página de fin:618
DOI: http://dx.doi.org/10.1007/s00442-017-3986-1
Título revista:Oecologia
Título revista abreviado:Oecologia
ISSN:00298549
CODEN:OECOB
CAS:water, 7732-18-5; Water
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00298549_v185_n4_p607_delaVega

Referencias:

  • Araújo, M., Ferri-Yáñez, F., Bozinovic, F., Marquet, P., Valladares, F., Chown, S., Heat freezes niche evolution (2013) Ecol Lett, 16, pp. 1206-1219. , PID: 23869696
  • Balsalobre, A., (2016) Ph-D Thesis: ¿Qué especies de vinchucas modificarán su distribución geográfica en la Argentina? Un análisis de los microhábitats y microclimas de los triatominos vectores de la enfermedad de Chagas, , Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Argentina
  • Belliard, S., (2015) Degree Thesis. Plasticidad de la tolerancia térmica por aclimatación en la vinchuca Rhodnius prolixus, , Universidad de Bue Aires, Argentina
  • Benoit, J., Denlinger, D., Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods (2010) J Insect Physiol, 56 (10), pp. 1366-1376. , COI: 1:CAS:528:DC%2BC3cXpvV2hsrY%3D, PID: 20206630
  • Buckley, L., Urban, M., Angilletta, M., Crozier, L., Rissler, L., Sears, M., Can mechanism inform species’ distribution models? (2010) Ecol Lett, 13 (8), pp. 1041-1054. , PID: 20482574
  • Bujan, J., Yanoviak, S.P., Kaspari, M., Desiccation resistance in tropical insects: causes and mechanisms underlying variability in a Panama ant community (2016) Ecol Evol, 6 (17), pp. 6282-6291. , PID: 27648242
  • Bulleri, F., Bruno, J.F., Silliman, B.R., Stachowicz, J.J., Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning (2016) Funct Ecol, 30 (1), pp. 70-78
  • Carcavallo, R.U., Curto de Casas, S.I., Sherlock, I.A., Galíndez-Girón, I., Jurberg, J., Galvão, C., Noireau, F., Geographical distribution and alti-latitudinal dispersion (1999) Atlas Chagas Dis Vect Am, 3, pp. 747-792
  • Chown, S., Nicolson, S., (2004) Insect physiological ecology, p. 244. , Oxford University Press, New York
  • Chown, S., Sørensen, J., Terblanche, J., Water loss in insects: an environmental change perspective (2011) J Insect Physiol, 57 (8), pp. 1070-1084. , COI: 1:CAS:528:DC%2BC3MXpvFCgtrc%3D, PID: 21640726
  • Clark, N., The effect of temperature and humidity upon the eggs of the bug, Rhodnius prolixus (Heteroptera, Reduviidae) (1935) J Anim Ecol, 4, pp. 82-87
  • Coast, G.M., Neuroendocrine control of ionic homeostasis in blood-sucking insects (2009) J Exp Biol, 212, pp. 378-386. , COI: 1:CAS:528:DC%2BD1MXjs12qsLg%3D, PID: 19151213
  • Colwell, R.K., Rangel, T.F., Hutchinson’s duality: the once and future niche (2009) Proc Natl Acad Sci USA, 106, pp. 19651-19658. , COI: 1:CAS:528:DC%2BC3cXntFKnt74%3D, PID: 19805163
  • de la Vega, G.J., Schilman, P.E., Ecological and physiological thermal niches in vectors of Chagas disease (2017) Med Vet Entomol
  • de la Vega, G.J., Medone, P., Ceccarelli, S., Rabinovich, J., Schilman, P.E., Geographical distribution, climatic variability and thermo-tolerance of Chagas disease vectors (2015) Ecography, 38 (8), pp. 851-860
  • de Souza, R., Diotaiuti, L., Lorenzo, M., Gorla, D.E., Analysis of the geographical distribution of Triatoma vitticeps (Stal, 1859) based on data of species occurrence in Minas Gerais, Brazil (2010) J Infec Genet Evol, 10 (6), pp. 720-760
  • Denny, M., (2016) Ecological mechanics. Principles of life’s physical interactions, , Princeton University Press, Princeton
  • Diniz-Filho, J.A.F., Ceccarelli, S., Hasperué, W., Rabinovich, J., Geographical patterns of Triatominae (Heteroptera: Reduviidae) richness and distribution in the Western Hemisphere (2013) Insect Conserv Divers, 6, pp. 704-714
  • Edney, E., (1977) Water balance in land arthropods, , Springer, Germany
  • Elith, J., Kearney, M., Phillips, S., The art of modelling range-shifting species (2010) Methods Ecol Evol, 1 (4), pp. 330-342
  • Felsenstein, J., Phylogenies and comparative method (1985) Am Nat, 125 (1), pp. 1-15
  • Fergnani, P., Ruggiero, A., Ceccarelli, S., Menu, F., Rabinovich, J., Large-scale patterns in morphological diversity and species assemblages in Neotropical Triatominae (Heteroptera: Reduviidae) (2013) Mem Inst Oswaldo Cruz, 108 (8), pp. 997-1008. , PID: 24402152
  • Fourcade, Y., Engler, J.O., Rödder, D., Secondi, J., Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias (2014) PLoS One, 9 (5). , PID: 24818607
  • Gibbs, A., Water balance in desert Drosophila: lessons from non-charismatic (2002) Comp Biochem Physiol Part A, 133, pp. 781-789
  • Gouveia, S., Hortal, J., Tejedo, M., Duarte, H., Cassemiro, F., Navas, C., Diniz-filho, J.A.F., Climatic niche at physiological and macroecological scales: the thermal tolerance geographical range interface and niche dimensionality (2014) Glob Ecol Biogeogr, 23, pp. 446-456
  • Graham, C.H., Hijmans, R.J., A comparison of methods for mapping species ranges and species richness (2006) Glob Ecol Biogeogr, 15 (6), pp. 578-587
  • Gurgel-Gonçalves, R., Galvao, C., Costa, J., Peterson, A.T., Geographic distribution of Chagas disease vectors in Brazil based on ecological niche modeling (2012) J Trop Med, 2012, pp. 1-15
  • Hadley, N.F., (1994) Water relations of terrestrial arthropods, p. 356. , Academic Press Inc, San Diego, California
  • Hijmans, R.J., van Etten, J., raster: Geographic data analysis and modeling (2015) R package version, 2 (1-49), p. 2013
  • Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., dismo: Species distribution modeling (2015) R package version, 1, p. 12. , 0
  • Hill, M., Hoffmann, A., Macfadyen, S., Umina, P., Elith, J., Understanding niche shifts: using current and historical data to model the invasive redlegged earth mite, Halotydeus destructor (2012) ‎Divers Distrib, 18 (2), pp. 191-203
  • Hutchinson, G.E., Concluding remarks (1957) Cold Spring Harb Symp Quant Biol, 22, pp. 415-427
  • Hypsa, V., Tietz, D., Zrzavý, J., Rego, R., Galvao, C., Jurberg, J., Phylogeny and biogeography of Triatominae (Hemiptera: Reduviidae): molecular evidence of a New World origin of the Asiatic clade (2002) Mol Phylogenet Evol, 23 (3), pp. 447-457. , COI: 1:CAS:528:DC%2BD38XltVKrt78%3D, PID: 12099798
  • (2014) Impacts, adaptation and vulnerability: regional aspects, , Cambridge University Press, New York
  • Jiménez-Valverde, A., Lobo, J.M., Threshold criteria for conversion of probability of species presence to either-or presence-absence (2007) Acta Oecol, 31, pp. 361-369
  • Jurenka, R., Terblanche, J.S., Klok, C.J., Chown, S.L., Krafsur, E.S., Cuticular lipid mass and desiccation rates in Glossina pallidipes: interpopulation variation (2007) Physiol Entomol, 32 (3), pp. 287-293. , COI: 1:CAS:528:DC%2BD2sXhtFWiu7%2FN, PID: 18726002
  • Kearney, M., Habitat, environment and niche: what are we modelling? (2006) Oikos, 115 (1), pp. 186-191
  • Kleynhans, E., Terblanche, J., The evolution of water balance in Glossina (Diptera: Glossinidae): correlations with climate (2009) Biol Lett, 5, pp. 93-96. , PID: 19004752
  • Kleynhans, E., Terblanche, J., Complex interactions between temperature and relative humidity on water balance of adult tsetse (Glossinidae, Diptera): implications for climate change (2011) Front Physiol, 2 (74), pp. 1-10
  • Klok, J., Chown, S., Critical Thermal Limits, Temperature Tolerance and Water Balance of a Sub-Antarctic Caterpillar, Pringleophaga marioni (Lepidoptera: Tineidae) (1997) J Insect Physiol, 43 (7), pp. 685-694. , COI: 1:CAS:528:DyaK2sXls12lt70%3D
  • Lapinski, W., Tschapka, M., Desiccation resistance reflects patterns of microhabitat choice in a Central American assemblage of wandering spiders (2014) J Exp Biol, 217 (15), pp. 2789-2795. , PID: 24855682
  • Lorenzo, M., Lazzari, C.R., Temperature and relative humidity affect the selection of shelters by Triatoma infestans, vector of Chagas disease (1999) Acta Trop, 72, pp. 241-249. , COI: 1:STN:280:DyaK1M3kslOltw%3D%3D, PID: 10232780
  • Losos, J.B., Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species (2008) Ecol Lett, 11 (10), pp. 995-1003. , PID: 18673385
  • Luz, C., Fargues, J., Grunewald, J., Development of Rhodnius prolixus (Hemiptera: Reduviidae) under constant and cyclic conditions of temperature and humidity (1999) Mem Inst Oswaldo Cruz, 94 (3), pp. 403-409. , COI: 1:STN:280:DyaK1M3nvFGquw%3D%3D, PID: 10348991
  • Lyons, C.L., Coetzee, M., Terblanche, J., Chown, S., Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus (2012) Malar J, 11, p. 226. , PID: 22770378
  • Mac Arthur, R., (1984) Geographical ecology: patterns in the distribution of species, p. 288. , Harper and Row, New York
  • Martin, P., Lefebvre, M., Malaria and climate: sensitivity of potential transmission to climate (1995) Ambio, 24 (4), pp. 200-207
  • Mitchell, T., Carter, T., Jones, P., Hulme, M., New, M., (2004) A comprehensive set of climate scenarios for Europe and the globe: the observed record (1900–2000) and 16 scenarios (2000–2100), p. 30. , University of East Anglia, Norwich
  • Monahan, W.B., A mechanistic niche model for measuring species’ distributional responses to seasonal temperature gradients (2009) PLoS One, 4 (11). , PID: 19936234
  • Nenzén, H.K., Araújo, M.B., Choice of threshold alters projections of species range shifts under climate change (2011) Ecol Modell, 222 (18), pp. 3346-3354
  • Orme, D., The caper package: comparative analysis of phylogenetics and evolution in R (2013) R package version, 5 (2), pp. 1-36
  • Phillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions (2006) Ecol Modell, 190 (3), pp. 231-259
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., The nlme package: linear and nonlinear mixed effects models (2014) R package version, 3, pp. 1-131
  • Pires, H., Lazzari, C.R., Schilman, P.E., Diotaiuti, L., Lorenzo, M., Dynamics of thermopreference in the Chagas disease vector Panstrongylus megistus (Hemiptera: Reduviidae) (2002) J Med Entomol, 39 (5), pp. 716-719. , COI: 1:STN:280:DC%2BD38vptVWlsg%3D%3D, PID: 12349852
  • (2015) R: a language and environment for statistical computing, , R Foundation for Statistical Computing, Vienna
  • Richmond, O., McEntee, J., Hijmans, R., Brashares, J., Is the climate right for pleistocene rewilding? Using species distribution models to extrapolate climatic suitability for mammals across continents (2010) PLoS One, 5 (9). , PID: 20877563
  • Roca, M., Lazzari, C.R., Effects of the relative humidity on the haematophagous bug Triatoma infestans. Higropreference and eclosion success (1994) J Insect Physiol, 40, pp. 901-907
  • Rolandi, C., Schilman, P.E., Linking global warning, metabolic rate of haematophagous vectors and the transmission of infectious diseases (2012) Front Physiol, 3 (75), pp. 1-3
  • Rolandi, C., Iglesias, M., Schilman, P.E., Metabolism and water loss rate of the haematophagous insect Rhodnius prolixus: effect of starvation and temperature. ‎J (2014) Exp Biol, 217, pp. 4414-4422
  • Schilman, P.E., Lighton, J.R.B., Holway, D.A., Respiratory and cuticular water loss in insects with continuous respiration: comparison across five different ant species (2005) J Insect Physiol, 51 (12), pp. 1295-1305. , COI: 1:CAS:528:DC%2BD2MXht1ejsr7P, PID: 16154585
  • Schilman, P.E., Lighton, J.R.B., Holway, D., Water balance in the Argentine ant (Linepithema humile) compared with five common native ant species from southern California (2007) Physiol Entomol, 32 (1), pp. 1-7
  • Schilman, P.E., Minoli, S., Lazzari, C.R., The adaptive value of hatching towards the end of the night: lessons from eggs of the haematophagous bug Rhodnius prolixus (2009) Physiol Entomol, 34 (3), pp. 231-237
  • Svenning, J., Normand, S., Kageyama, M., Glacial refugia of temperate trees in Europe: insights from species distribution modelling (2008) J Ecol, 96 (6), pp. 1117-1127
  • Tee, H., Lee, C., Water balance profiles, humidity preference and survival of two sympatric cockroach egg parasitoids Evania appendigaster and prostocetus hagenowii (Hymenoptera: Evaniidae; Eulophidae) (2015) J Insect Physiol, 77, pp. 45-54. , COI: 1:CAS:528:DC%2BC2MXntlWmur0%3D, PID: 25921676
  • Tingley, R., Vallinoto, M., Sequeira, F., Kearney, M., Realized niche shift during a global biological invasion (2014) Proc Natl Acad Sci USA, 111 (28), pp. 10233-10238. , COI: 1:CAS:528:DC%2BC2cXhtVOit7nL, PID: 24982155
  • Weldon, C.W., Boardman, L., Marlin, D., Terblanche, J.S., Physiological mechanisms of dehydration tolerance contribute to the invasion potential of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) relative to its less widely distributed congeners (2016) Front Zool, 13, p. 15. , PID: 27034703
  • Control of Chagas disease Second report of the WHO (2002) Tech Rep Ser, 905, pp. 1-119
  • Wigglesworth, V.B., Transpiration through the cuticle of insects (1945) J Exp Biol, 21 (3-4), pp. 97-114
  • Zachariassen, K., The water conserving physiological compromise of desert insects (1996) Eur J Entomol, 3, pp. 359-367
  • Zuur, A., Ieno, E., Elphick, C., A protocol for data exploration to avoid common statistical problems (2010) Methods Ecol Evol, 1 (1), pp. 3-14

Citas:

---------- APA ----------
de la Vega, G.J. & Schilman, P.E. (2017) . Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors. Oecologia, 185(4), 607-618.
http://dx.doi.org/10.1007/s00442-017-3986-1
---------- CHICAGO ----------
de la Vega, G.J., Schilman, P.E. "Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors" . Oecologia 185, no. 4 (2017) : 607-618.
http://dx.doi.org/10.1007/s00442-017-3986-1
---------- MLA ----------
de la Vega, G.J., Schilman, P.E. "Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors" . Oecologia, vol. 185, no. 4, 2017, pp. 607-618.
http://dx.doi.org/10.1007/s00442-017-3986-1
---------- VANCOUVER ----------
de la Vega, G.J., Schilman, P.E. Using eco-physiological traits to understand the realized niche: the role of desiccation tolerance in Chagas disease vectors. Oecologia. 2017;185(4):607-618.
http://dx.doi.org/10.1007/s00442-017-3986-1