Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The relative advantages of being deciduous or evergreen in subtropical forests and the relationship between leaf phenology and nutrient resorption efficiency are not well understood. The most successful deciduous species (Lyonia ovalifolia) in an evergreen-dominated subtropical montane cloud forest in southwest (SW) China maintains red senescing leaves throughout much of the winter. The aim of this study was to investigate whether red senescing leaves of this species were able to assimilate carbon in winter, to infer the importance of maintaining a positive winter carbon balance in subtropical forests, and to test whether an extended leaf life span is associated with enhanced nutrient resorption and yearly carbon gain. The red senescing leaves of L. ovalifolia assimilated considerable carbon during part of the winter, resulting in a higher yearly carbon gain than co-occurring deciduous species. Its leaf N and P resorption efficiency was higher than for co-occurring non-anthocyanic deciduous species that dropped leaves in autumn, supporting the hypothesis that anthocyanin accumulation and/or extended leaf senescence help in nutrient resorption. Substantial winter carbon gain and efficient nutrient resorption may partially explain the success of L. ovalifolia versus that of the other deciduous species in this subtropical forest. The importance of maintaining a positive carbon balance for ecological success in this forest also provides indirect evidence for the dominance of evergreen species in the subtropical forests of SW China. © 2013 Springer-Verlag Berlin Heidelberg.

Registro:

Documento: Artículo
Título:Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests
Autor:Zhang, Y.-J.; Yang, Q.-Y.; Lee, D.W.; Goldstein, G.; Cao, K.-F.
Filiación:Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 666303 Mengla, Yunnan, China
Department of Biology, University of Miami, PO Box 249118, Coral Gables, FL, 33124, United States
Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, 676200 Jingdong, Yunnan, China
Graduate University of Chinese Academy of Sciences, 100039 Beijing, China
Department of Biological Sciences, Florida International University, Miami, FL, 33199, United States
Departamento de Ecologia, Genetica y Evolucion, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Buenos Aires, Argentina
State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Lab. of Ministry of Edu. for Microbial and Plant Genetic Eng., and College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
Palabras clave:Anthocyanin; Carbon balance; Cloud forest; Deciduousness; Leaf phenology; bioaccumulation; carbon; carbon balance; cloud forest; coexistence; deciduous tree; dominance; evergreen tree; leaf morphology; nutrient cycling; phenology; photosynthesis; senescence; subtropical region; winter; China; Lyonia ovalifolia; anthocyanin; carbon; nitrogen; phosphorus; rain; adaptation; aging; analysis of variance; article; China; Ericaceae; metabolism; photosynthesis; physiology; plant leaf; season; species difference; tree; Adaptation, Biological; Aging; Analysis of Variance; Anthocyanins; Carbon; China; Ericaceae; Nitrogen; Phosphorus; Photosynthesis; Plant Leaves; Rain; Seasons; Species Specificity; Trees
Año:2013
Volumen:173
Número:3
Página de inicio:721
Página de fin:730
DOI: http://dx.doi.org/10.1007/s00442-013-2672-1
Título revista:Oecologia
Título revista abreviado:Oecologia
ISSN:00298549
CODEN:OECOB
CAS:carbon, 7440-44-0; nitrogen, 7727-37-9; phosphorus, 7723-14-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00298549_v173_n3_p721_Zhang

Referencias:

  • Aerts, R., The advantages of being evergreen (1995) Trends Ecol Evol, 10, pp. 402-407
  • Archetti, M., Doring, T.F., Hagen, S.B., Hughes, N.M., Leather, S.R., Lee, D.W., Lev-Yadun, S., Thomas, H., Adaptive explanations for autumn colours: an interdisciplinary approach (2009) Trends Ecol Evol, 24, pp. 166-173
  • Axelrod, D.I., Origin of deciduous and evergreen habit in temperate forests (1966) Evolution, 20, pp. 1-15
  • Barnes, P.W., Searles, P.S., Ballare, C.L., Ryel, R.J., Caldwell, M.M., Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies (2000) Physiol Plant, 109, pp. 274-283
  • Bassman, J., Zwier, J.C., Gas exchange characteristics of Populus trichocarpa, Populus deltoides and a Populus trichocarpa × P. deltoides clone (1991) Tree Physiol, 8, pp. 145-149
  • Bogard, M., Jourdan, M., Allard, V., Martre, P., Perretant, M.R., Ravel, C., Heumez, E., Le Gouis, J., Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs (2011) J Exp Bot, 62, pp. 3621-3636
  • Boorse, G.C., Gartman, T.L., Meyer, A.C., Ewers, F.W., Davis, S.D., Comparative methods of estimating freezing temperatures and freezing injury in leaves of chaparral shrubs (1998) Int J Plant Sci, 159, pp. 513-521
  • Chalker-Scott, L., Environmental significance of anthocyanins in plant stress responses (1999) Photochem Photobiol, 70, pp. 1-9
  • Chalker-Scott, L., Do anthocyanins function as osmoregulators in leaf tissues? (2002) Anthocyanins in leaves. Advances in botanical research, 37, pp. 104-127. , In: Gould KS, Lee DW (eds), Academic, New York
  • Demmig-Adams, B., Adams, W.W., Photoprotection and other responses of plants to high light stress (1992) Annu Rev Plant Physiol, 43, pp. 599-626
  • Engel, N., Jenny, T.A., Mooser, V., Gossauer, A., Chlorophyll catabolism in Chlorella protothecoides. Isolation and structural elucidation of a red bilin derivative (1991) FEBS Lett, 293, pp. 131-133
  • Evans, J.R., Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum) (1983) Plant Physiol, 72, pp. 297-302
  • Evans, J.R., Photosynthesis-the dependence on nitrogen partitioning (1989) Causes and Consequences of Variation in Growth Rate and Productivity of Higher Plants, pp. 159-174. , H. Lambers, M. L. Cambridge, H. Konings, and T. L. Pons (Eds.), The Hague: SPB
  • Feild, T.S., Lee, D.W., Holbrook, N.M., Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood (2001) Plant Physiol, 127, pp. 566-574
  • Gamon, J.A., Surfus, J.S., Assessing leaf content and activity with a reflectometer (1999) New Phytol, 143, pp. 105-117
  • Gamon, J.A., Filella, I., Penuelas, J., The dynamic 531-nanometer delta reflectance signal: a survey of twenty angiosperm species (1993) Photosynthetic responses to the environment, pp. 172-177. , In: Yamamoto HY, Smith CM (eds), American Society of Plant Physiologists, Rockville
  • Gamon, J.A., Serrano, L., Surfus, J.S., The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels (1997) Oecologia, 112, pp. 492-501
  • Germino, M.J., Smith, W.K., Sky exposure, crown architecture, and low-temperature photoinhibition in conifer seedlings at alpine treeline (1999) Plant Cell Environ, 22, pp. 407-415
  • Germino, M.J., Smith, W.K., Differences in microsite, plant form, and low-temperature photosynthesis in alpine plants (2000) Arct Antarct Alp Res, 32, pp. 388-396
  • Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B., Optical properties and nondestructive estimation of anthocyanin content in plant leaves (2001) Photochem Photobiol, 74, pp. 38-45
  • Givnish, T.J., Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox (2002) Silva Fenn, 36, pp. 703-743
  • Goldstein, G., Nobel, P.S., Water relations and low-temperature acclimation for cactus species varying in freezing tolerance (1994) Plant Physiol, 104, pp. 675-681
  • Gould, K.S., Nature's swiss army knife: the diverse protective roles of anthocyanins in leaves (2004) J Biomed Biotechnol, 5, pp. 314-320
  • Gould, K.S., Vogelmann, T.C., Han, T., Clearwater, M.J., Profiles of photosynthesis within red and green leaves of Quintinia serrata (2002) Physiol Plant, 116, pp. 127-133
  • Harborne, J.R., The flavonoids: recent advances (1988) Plant Pigments, pp. 299-343. , T. W. Goodwin (Ed.), London: Academic
  • Hoch, W.A., Zeldin, E.L., Mcgown, B.H., Physiological significance of anthocyanins during autumnal leaf senescence (2001) Tree Physiol, 21, pp. 1-8
  • Hoch, W.A., Singsaas, E.L., McCown, B.H., Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels (2003) Plant Physiol, 133, pp. 1296-1305
  • Holaday, A.S., Martindale, W., Alred, R., Brooks, A.L., Leegood, R.C., Changes in activities of enzymes of carbon metabolism in leaves during exposure of plants to low temperature (1992) Plant Physiol, 98, pp. 1105-1114
  • Hughes, N.M., Smith, W.K., Attenuation of incident light in Galax urceolata (Diapensiaceae): concerted influence of adaxial and abaxial anthocyanic layers on photoprotection (2007) Am J Bot, 94, pp. 784-790
  • Hughes, N.M., Burkey, K.O., Neufeld, H.S., Functional role of anthocyanins in high-light winter leaves of the evergreen herb, Galax urceolata (2005) New Phytol, 168, pp. 575-587
  • Hughes, N.M., Carpenter, K.L., Cannon, J.G., Estimating contribution of anthocyanin pigments to osmotic adjustment during winter leaf reddening (2013) J Plant Physiol, 170, pp. 230-233
  • Iturraspe, J., Engel, N., Gossauer, A., Chlorophyll catabolism. Isolation and structure elucidation of chlorophyll b catabolites in Chlorella protothecoides (1994) Phytochemistry, 35, pp. 1387-1390
  • Kikuzawa, K., Lechowicz, M.J., (2011) Ecology of Leaf Longevity, , Berlin: Springer
  • Killingbeck, K.T., Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency (1996) Ecology, 77, pp. 1716-1727
  • Kytridis, V.-P., Manetas, Y., Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of the oxy-radical source (2006) J Exp Bot, 57, pp. 2203-2210
  • Lee, D.W., O'Keefe, J., Holbrook, N.M., Feild, T.S., Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA (2003) Ecol Res, 18, pp. 677-694
  • Lichtenthaler, H.K., Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents (1983) Biochem Soc Trans, 11, pp. 591-592
  • Lipp, C.C., Goldstein, G., Meinzer, F.C., Neimczura, W., Freezing tolerance and avoidance in high-elevation Hawaiian plants (1994) Plant Cell Environ, 17, pp. 1035-1044
  • Malhi, Y., Baldocchi, D.D., Jarvis, P.G., The carbon balance of tropical temperate and boreal forests (1999) Plant Cell Environ, 22, pp. 715-740
  • Matile, P., Biochemistry of Indian summer: physiology of autumn leaf coloration (2000) Exp Gerontol, 35, pp. 145-158
  • Matile, R., Hörtensteiner, S., Thomas, H., Chlorophyll degradation (1999) Annu Rev Plant Physiol Plant Mol Biol, 50, pp. 67-95
  • Miyazawa, Y., Kikuzawa, K., Otsuki, K., Decrease in the capacity for RuBP carboxylation and regeneration with the progression of cold-induced photoinhibition during winter in evergreen broadleaf tree species in a temperate forest (2007) Funct Plant Biol, 34, pp. 393-401
  • Mur, L.A.J., Aubry, S., Mondhe, M., Kingston-Smith, A., Gallagher, J., Timms-Taravella, E., James, C., Ougham, H., Accumulation of chlorophyll catabolites photosensitizes the hypersensitive response elicited by Pseudomonas syringae in Arabidopsis (2010) New Phytol, 188, pp. 161-174
  • Murakami, P.F., Schaberg, P.G., Shane, J.B., Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn (2008) Tree Physiol, 28, pp. 1467-1473
  • Neill, S.O., Gould, K.S., Anthocyanins in leaves: light attenuators or antioxidants? (2003) Funct Plant Biol, 30, pp. 865-873
  • Neill, S.O., Gould, K.S., Kilmartin, P.A., Mitchell, K.A., Markham, K.R., Antioxidant activities of red versus green leaves in Elatostema rugosum (2002) Plant Cell Environ, 25, pp. 539-548
  • Oberbauer, S.F., Starr, G., The role of anthocyanins for photosynthesis of Alaskan Arctic evergreens during snowmelt (2002) Anthocyanins in leaves. Advances in botanical research, 37, pp. 129-145. , In: Gould KS, Lee DW (eds), Academic, New York
  • Oliveira, G., Penuelas, J., Effects of winter cold stress on photosynthesis and photochemical efficiency of PSII of the Mediterranean Cistus albidus L. and Quercus ilex L (2004) Plant Ecol, 175, pp. 179-191
  • Qiu, X.-Z., Xie, S.-C., (1998) Studies on the Forest Ecosystem in Ailao Mountains, Yunnan, , Kunming: Yunnan Science and Technology
  • Schaberg, P.G., Murakami, P.F., Turner, M.R., Heitz, H.K., Hawley, G.J., Association of red coloration with senescence of sugar maple leaves in autumn (2008) Trees, 22, pp. 573-578
  • Sierra-Almeida, A., Cavieres, L.A., Summer freezing resistance in high-elevation plants exposed to experimental warming in the central Chilean Andes (2010) Oecologia, 163, pp. 267-276
  • Smillie, R.M., Hetherington, S.E., Photoabatement by anthocyanin shields photosynthetic systems from light stress (1999) Photosynthetica, 36, pp. 451-463
  • Song, Y.-C., Chen, X.-Y., Wang, X.-H., Studies of evergreen broad-leaved forests of China: a retrospect and prospect (2005) J East China Normal Univ, 1, pp. 1-8. , (in Chinese with English Abstract)
  • Taneda, H., Tateno, M., Hydraulic conductivity, photosynthesis and leaf water balance in six evergreen woody species from fall to winter (2005) Tree Physiol, 25, pp. 299-306
  • Thomashow, M.F., Plant cold acclimation: freezing tolerance genes and regulatory mechanisms (1999) Annu Rev Plant Physiol Plant Mol Biol, 50, pp. 571-599
  • Wolfe, J.A., Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event (1987) Paleobiology, 13, pp. 215-226
  • Wu, Z.-Y., (1980) The Vegetation of China, , Beijing: Science Press
  • Xin, Z., Browse, J., Cold comfort farm: the acclimation of plants to freezing temperatures (2000) Plant Cell Environ, 23, pp. 893-902

Citas:

---------- APA ----------
Zhang, Y.-J., Yang, Q.-Y., Lee, D.W., Goldstein, G. & Cao, K.-F. (2013) . Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests. Oecologia, 173(3), 721-730.
http://dx.doi.org/10.1007/s00442-013-2672-1
---------- CHICAGO ----------
Zhang, Y.-J., Yang, Q.-Y., Lee, D.W., Goldstein, G., Cao, K.-F. "Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests" . Oecologia 173, no. 3 (2013) : 721-730.
http://dx.doi.org/10.1007/s00442-013-2672-1
---------- MLA ----------
Zhang, Y.-J., Yang, Q.-Y., Lee, D.W., Goldstein, G., Cao, K.-F. "Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests" . Oecologia, vol. 173, no. 3, 2013, pp. 721-730.
http://dx.doi.org/10.1007/s00442-013-2672-1
---------- VANCOUVER ----------
Zhang, Y.-J., Yang, Q.-Y., Lee, D.W., Goldstein, G., Cao, K.-F. Extended leaf senescence promotes carbon gain and nutrient resorption: Importance of maintaining winter photosynthesis in subtropical forests. Oecologia. 2013;173(3):721-730.
http://dx.doi.org/10.1007/s00442-013-2672-1