Artículo

Durán, R.G.; Hervella-Nieto, L.; Liberman, E.; Rodríguez, R.; Solomin, J. "Finite element analysis of the vibration problem of a plate coupled with a fluid" (2000) Numerische Mathematik. 86(4):591-616
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t > 0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t → 0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. © Springer-Verlag 2000.

Registro:

Documento: Artículo
Título:Finite element analysis of the vibration problem of a plate coupled with a fluid
Autor:Durán, R.G.; Hervella-Nieto, L.; Liberman, E.; Rodríguez, R.; Solomin, J.
Filiación:Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 - Buenos Aires, Argentina
Departamento de Matemática, Facultade de Informática, Universidade da Coruña, 15071 - A Coruña, Spain
Comn. Invest. Cie. Provincia B., Departamento de Matemática, Universidad Nacional de La Plata, C.C. 172, 1900 - La Plata, Argentina
Depto. de Ing. Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 172, 1900 - La Plata, Argentina
Año:2000
Volumen:86
Número:4
Página de inicio:591
Página de fin:616
DOI: http://dx.doi.org/10.1007/PL00005411
Título revista:Numerische Mathematik
Título revista abreviado:Numer. Math.
ISSN:0029599X
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0029599X_v86_n4_p591_Duran

Referencias:

  • Alessandrini, S.M., Arnold, D.N., Falk, R.S., Madureira, A.L., Derivation and justification of plate models by variational methods (1999) CRM Proc. & Lect. Notes Ser., 21, pp. 1-20. , Plates and Shells, M. Fortin, (ed.), AMS, Providence
  • Arnold, D.N., Falk, R.S., A uniformly accurate finite element method for the Reissner-Mindlin plate (1989) SIAM J. Numer. Anal., 26, pp. 1276-1290
  • Babuška, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numerical Analysis, 2. , P. G. Ciarlet and J. L. Lions, (eds.), North Holland, Amsterdam
  • Bermúdez, A., Durán, R., Muschietti, M.A., Rodríguez, R., Solomin, J., Finite element vibration analysis of fluid-solid systems without spurious modes (1995) SIAM J. Numer. Anal., 32, pp. 1280-1295
  • Bermudez, A., Hervella-Nieto, L., Rodríguez, R., Numerical solution of three-dimensional elastoacustic problems (1996) Numerical Methods in Engineering '96, pp. 874-880. , J. Wiley & Sons
  • Bermúdez, A., Rodríguez, R., Finite element computation of the vibration modes of a fluid-solid system (1994) Comp. Methods Appl. Mech. Eng., 119, pp. 355-370
  • Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Element Methods, , Springer-Verlag, New York
  • Brezzi, F., Fortin, M., Stenberg, R., Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models (1991) Math. Models Methods Appl. Sci, 1, pp. 125-151
  • Conca, C., Planchard, J., Vanninathan, M., (1992) Fluids and Periodic Structures, , Masson, Paris
  • Descloux, J., Nassif, N., Rappaz, J., On spectral approximation. Part 1: The problem of convergence. Part 2: Error estimates for the Galerkin methods. R.A.I.R.O (1978) Anal. Numer., 12, pp. 97-119
  • Durán, R., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J., Approximation of the vibration modes of a plate by Reissner-Mindlin equations (1999) Math. Comp., 68, pp. 1447-1463
  • Durán, R., Liberman, E., On mixed finite element methods for the Reissner-Mindlin plate model (1992) Math. Comp., 58, pp. 561-573
  • Everstine, G.C., A symmetric potential formulation for fluid-structure interaction (1981) J. Sound Vib., 79, pp. 157-160
  • Girault, V., Raviart, P.A., (1986) Finite Element Methods for Navier-Stokes Equations, , Springer-Verlag, Berlin, Heidelberg, New York, Tokio
  • Hamdi, M., Ouset, Y., Verchery, G., A displacement method for the analysis of vibrations of coupled fluid-structure systems (1978) Internat. J. Numer. Methods Eng., 13, pp. 139-150
  • Hughes, T.J.R., (1987) The Finite Element Method: Linear Static and Dinamic Finite Element Analysis, , Prentice-Hall, Englewood Cliffs, NJ
  • Kato, T., (1966) Perturbation Theory for Linear Operators. Lecture Notes in Mathematics, 132. , Springer Verlag, Berlin
  • Morand, H., Ohayon, R., Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results (1979) Internat. J. Numer. Methods Eng., 14, pp. 741-755
  • Morand, H.J.-P., Ohayon, R., (1995) Fluid-structure Interactions, , John Wiley & Sons, New York
  • Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, 606, pp. 292-315. , Springer Verlag, Berlin, Heidelberg, New York
  • Rodríguez, R., Solomin, J., The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems (1996) Math. Comp., 65, pp. 1463-1475
  • Vanmaele, M., Ženíšek, A., External finite element approximations of eigenvalue problems (1993) M2AN, 27, pp. 565-589
  • Vanmaele, M., Ženíšek, A., The combined effect of numerical integration and approximation of the boundary in the finite element method for eigenvalue problems (1995) Numer. Math., 71, pp. 253-273
  • Zienkiewicz, O.C., Taylor, R.L., (1989) The Finite Element Method, 2. , McGraw-Hill

Citas:

---------- APA ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R. & Solomin, J. (2000) . Finite element analysis of the vibration problem of a plate coupled with a fluid. Numerische Mathematik, 86(4), 591-616.
http://dx.doi.org/10.1007/PL00005411
---------- CHICAGO ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J. "Finite element analysis of the vibration problem of a plate coupled with a fluid" . Numerische Mathematik 86, no. 4 (2000) : 591-616.
http://dx.doi.org/10.1007/PL00005411
---------- MLA ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J. "Finite element analysis of the vibration problem of a plate coupled with a fluid" . Numerische Mathematik, vol. 86, no. 4, 2000, pp. 591-616.
http://dx.doi.org/10.1007/PL00005411
---------- VANCOUVER ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J. Finite element analysis of the vibration problem of a plate coupled with a fluid. Numer. Math. 2000;86(4):591-616.
http://dx.doi.org/10.1007/PL00005411