Abstract:
We consider the approximation of the vibration modes of an elastic plate in contact with a compressible fluid. The plate is modelled by Reissner-Mindlin equations while the fluid is described in terms of displacement variables. This formulation leads to a symmetric eigenvalue problem. Reissner-Mindlin equations are discretized by a mixed method, the equations for the fluid with Raviart-Thomas elements and a non conforming coupling is used on the interface. In order to prove that the method is locking free we consider a family of problems, one for each thickness t > 0, and introduce appropriate scalings for the physical parameters so that these problems attain a limit when t → 0. We prove that spurious eigenvalues do not arise with this discretization and we obtain optimal order error estimates for the eigenvalues and eigenvectors valid uniformly on the thickness parameter t. © Springer-Verlag 2000.
Registro:
| Documento: |
Artículo
|
| Título: | Finite element analysis of the vibration problem of a plate coupled with a fluid |
| Autor: | Durán, R.G.; Hervella-Nieto, L.; Liberman, E.; Rodríguez, R.; Solomin, J. |
| Filiación: | Departamento de Matemática, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 - Buenos Aires, Argentina Departamento de Matemática, Facultade de Informática, Universidade da Coruña, 15071 - A Coruña, Spain Comn. Invest. Cie. Provincia B., Departamento de Matemática, Universidad Nacional de La Plata, C.C. 172, 1900 - La Plata, Argentina Depto. de Ing. Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 172, 1900 - La Plata, Argentina
|
| Año: | 2000
|
| Volumen: | 86
|
| Número: | 4
|
| Página de inicio: | 591
|
| Página de fin: | 616
|
| DOI: |
http://dx.doi.org/10.1007/PL00005411 |
| Título revista: | Numerische Mathematik
|
| Título revista abreviado: | Numer. Math.
|
| ISSN: | 0029599X
|
| Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0029599X_v86_n4_p591_Duran |
Referencias:
- Alessandrini, S.M., Arnold, D.N., Falk, R.S., Madureira, A.L., Derivation and justification of plate models by variational methods (1999) CRM Proc. & Lect. Notes Ser., 21, pp. 1-20. , Plates and Shells, M. Fortin, (ed.), AMS, Providence
- Arnold, D.N., Falk, R.S., A uniformly accurate finite element method for the Reissner-Mindlin plate (1989) SIAM J. Numer. Anal., 26, pp. 1276-1290
- Babuška, I., Osborn, J., Eigenvalue problems (1991) Handbook of Numerical Analysis, 2. , P. G. Ciarlet and J. L. Lions, (eds.), North Holland, Amsterdam
- Bermúdez, A., Durán, R., Muschietti, M.A., Rodríguez, R., Solomin, J., Finite element vibration analysis of fluid-solid systems without spurious modes (1995) SIAM J. Numer. Anal., 32, pp. 1280-1295
- Bermudez, A., Hervella-Nieto, L., Rodríguez, R., Numerical solution of three-dimensional elastoacustic problems (1996) Numerical Methods in Engineering '96, pp. 874-880. , J. Wiley & Sons
- Bermúdez, A., Rodríguez, R., Finite element computation of the vibration modes of a fluid-solid system (1994) Comp. Methods Appl. Mech. Eng., 119, pp. 355-370
- Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Element Methods, , Springer-Verlag, New York
- Brezzi, F., Fortin, M., Stenberg, R., Quasi-optimal error bounds for approximation of shear-stresses in Mindlin-Reissner plate models (1991) Math. Models Methods Appl. Sci, 1, pp. 125-151
- Conca, C., Planchard, J., Vanninathan, M., (1992) Fluids and Periodic Structures, , Masson, Paris
- Descloux, J., Nassif, N., Rappaz, J., On spectral approximation. Part 1: The problem of convergence. Part 2: Error estimates for the Galerkin methods. R.A.I.R.O (1978) Anal. Numer., 12, pp. 97-119
- Durán, R., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J., Approximation of the vibration modes of a plate by Reissner-Mindlin equations (1999) Math. Comp., 68, pp. 1447-1463
- Durán, R., Liberman, E., On mixed finite element methods for the Reissner-Mindlin plate model (1992) Math. Comp., 58, pp. 561-573
- Everstine, G.C., A symmetric potential formulation for fluid-structure interaction (1981) J. Sound Vib., 79, pp. 157-160
- Girault, V., Raviart, P.A., (1986) Finite Element Methods for Navier-Stokes Equations, , Springer-Verlag, Berlin, Heidelberg, New York, Tokio
- Hamdi, M., Ouset, Y., Verchery, G., A displacement method for the analysis of vibrations of coupled fluid-structure systems (1978) Internat. J. Numer. Methods Eng., 13, pp. 139-150
- Hughes, T.J.R., (1987) The Finite Element Method: Linear Static and Dinamic Finite Element Analysis, , Prentice-Hall, Englewood Cliffs, NJ
- Kato, T., (1966) Perturbation Theory for Linear Operators. Lecture Notes in Mathematics, 132. , Springer Verlag, Berlin
- Morand, H., Ohayon, R., Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results (1979) Internat. J. Numer. Methods Eng., 14, pp. 741-755
- Morand, H.J.-P., Ohayon, R., (1995) Fluid-structure Interactions, , John Wiley & Sons, New York
- Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, 606, pp. 292-315. , Springer Verlag, Berlin, Heidelberg, New York
- Rodríguez, R., Solomin, J., The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems (1996) Math. Comp., 65, pp. 1463-1475
- Vanmaele, M., Ženíšek, A., External finite element approximations of eigenvalue problems (1993) M2AN, 27, pp. 565-589
- Vanmaele, M., Ženíšek, A., The combined effect of numerical integration and approximation of the boundary in the finite element method for eigenvalue problems (1995) Numer. Math., 71, pp. 253-273
- Zienkiewicz, O.C., Taylor, R.L., (1989) The Finite Element Method, 2. , McGraw-Hill
Citas:
---------- APA ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R. & Solomin, J.
(2000)
. Finite element analysis of the vibration problem of a plate coupled with a fluid. Numerische Mathematik, 86(4), 591-616.
http://dx.doi.org/10.1007/PL00005411---------- CHICAGO ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.
"Finite element analysis of the vibration problem of a plate coupled with a fluid"
. Numerische Mathematik 86, no. 4
(2000) : 591-616.
http://dx.doi.org/10.1007/PL00005411---------- MLA ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J.
"Finite element analysis of the vibration problem of a plate coupled with a fluid"
. Numerische Mathematik, vol. 86, no. 4, 2000, pp. 591-616.
http://dx.doi.org/10.1007/PL00005411---------- VANCOUVER ----------
Durán, R.G., Hervella-Nieto, L., Liberman, E., Rodríguez, R., Solomin, J. Finite element analysis of the vibration problem of a plate coupled with a fluid. Numer. Math. 2000;86(4):591-616.
http://dx.doi.org/10.1007/PL00005411