Artículo

Consentino, L.; Lambert, S.; Martino, C.; Jourdan, N.; Bouchet, P..-E.; Witczak, J.; Castello, P.; El-Esawi, M.; Corbineau, F.; d'Harlingue, A.; Ahmad, M. "Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism" (2015) New Phytologist. 206(4):1450-1462
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cryptochromes are widespread blue-light absorbing flavoproteins with important signaling roles. In plants they mediate de-etiolation, developmental and stress responses resulting from interaction with downstream signaling partners such as transcription factors and components of the proteasome. Recently, it has been shown that Arabidopsis cry1 activation by blue light also results in direct enzymatic conversion of molecular oxygen (O2) to reactive oxygen species (ROS) and hydrogen peroxide (H2O2) in vitro. Here we explored whether direct enzymatic synthesis of ROS by Arabidopsis cry1 can play a physiological role in vivo. ROS formation resulting from cry1 expression was measured by fluorescence assay in insect cell cultures and in Arabidopsis protoplasts from cryptochrome mutant seedlings. Cell death was determined by colorimetric assay. We found that ROS formation results from cry1 activation and induces cell death in insect cell cultures. In plant protoplasts, cryptochrome activation results in rapid increase in ROS formation and cell death. We conclude that ROS formation by cryptochromes may indeed be of physiological relevance and could represent a novel paradigm for cryptochrome signaling. © 2015 New Phytologist Trust.

Registro:

Documento: Artículo
Título:Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism
Autor:Consentino, L.; Lambert, S.; Martino, C.; Jourdan, N.; Bouchet, P..-E.; Witczak, J.; Castello, P.; El-Esawi, M.; Corbineau, F.; d'Harlingue, A.; Ahmad, M.
Filiación:UMR 8256 (B2A) CNRS - UPMC, IBPS, Université Pierre et Marie Curie, Bat C 3éme étage, 9 quai Saint-Bernard, Paris Cedex 05, 75252, France
Department of Biomedical Engineering, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL 32901, United States
Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Villanueva 1324, Buenos Aires, C1426BMJ, Argentina
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
UMR7622 CNRS-UPMC Biologie du Développement, IBPS, Bat C 2ème étage, boîte 24, 4 place Jussieu, Paris Cedex 05, 75005, France
Xavier University, 3800 Victory Parkway, Cincinatti, OH 45207, United States
Palabras clave:Arabidopsis thaliana; Cryptochrome; Oxidative stress; Photomorphogenesis; Photoreceptor; Reactive oxygen species (ROS) signaling; bioassay; dicotyledon; gene expression; light effect; morphogenesis; oxygen; photoreception; physiological response; signaling; Arabidopsis; Arabidopsis thaliana; Hexapoda; Arabidopsis protein; CRY1 protein, Arabidopsis; cryptochrome; oxygen; reactive oxygen metabolite; Arabidopsis; cell death; cell fractionation; cell survival; drug effects; evolution; genetic recombination; genetics; light; metabolism; protoplast; radiation response; SF9 cell line; signal transduction; Arabidopsis; Arabidopsis Proteins; Biological Evolution; Cell Death; Cell Survival; Cryptochromes; Light; Oxygen; Protoplasts; Reactive Oxygen Species; Recombination, Genetic; Sf9 Cells; Signal Transduction; Subcellular Fractions
Año:2015
Volumen:206
Número:4
Página de inicio:1450
Página de fin:1462
DOI: http://dx.doi.org/10.1111/nph.13341
Título revista:New Phytologist
Título revista abreviado:New Phytol.
ISSN:0028646X
CODEN:NEPHA
CAS:cryptochrome, 73745-06-9; oxygen, 7782-44-7; Arabidopsis Proteins; CRY1 protein, Arabidopsis; Cryptochromes; Oxygen; Reactive Oxygen Species
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0028646X_v206_n4_p1450_Consentino

Referencias:

  • Apel, K., Hirt, H., Reactive oxygen species: metabolism, oxidative stress, and signal transduction (2004) Annual Review of Plant Biology, 55, pp. 373-399
  • Bailly, C., El-Maarouf-Bouteau, H., Corbineau, F., From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology (2008) Comptes Rendus Biologies, 331, pp. 806-814
  • Barrero, J.M., Downie, A.B., Xu, Q., Gubler, F., A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination (2014) Plant Cell, 26, pp. 1094-1104
  • Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., Grossman, A.R., A flavin binding cryptochrome photoreceptor responds to both blue and red light in Chlamydomonas reinhardtii (2012) Plant Cell, 24, pp. 2992-3008
  • Bouly, J.P., Schleicher, E., Dionisio-Sese, M., Vandenbussche, F., Van Der Straeten, D., Bakrim, N., Meier, S., Bittl, R., Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states (2007) Journal of Biological Chemistry, 282, pp. 9383-9391
  • Burney, S., Wenzel, R., Kottke, T., Roussel, T., Hoang, N., Bouly, J.P., Bittl, R., Ahmad, M., Single amino acid substitution reveals latent photolyase activity in Arabidopsis cry1 (2012) Angewandte Chemie International Edition, 51, pp. 9356-9360
  • Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Brettel, K., Essen, L.O., Ahmad, M., The cryptochromes: blue light photoreceptors in plants and animals (2011) Annual Review of Plant Biology, 62, pp. 335-364
  • Chen, D., Xu, G., Tang, W., Jing, Y., Ji, Q., Fei, Z., Lin, R., Antagonistic basic helix-loop-helix/bZIP transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis (2013) Plant Cell, 25, pp. 1657-1673
  • Côme, D., Tissaoui, T., Induction d'une dormance embryonnaire secondaire chez le pommier (Pirus malus L.) par des atmospheres très appauvries en oxygene (1968) Comptes Rendus de l'Académie des Sciences, Paris, 266, pp. 444-479
  • Danon, A., Coll, N.S., Apel, K., Cryptochrome-1-dependent execution of programmed cell death induced by singlet oxygen in Arabidopsis thaliana (2006) Proceedings of the National Academy of Sciences, USA, 103, pp. 17036-17041
  • Engelhard, C., Wang, X., Robles, D., Moldt, J., Essen, L.-O., Batschauer, A., Bittl, R., Ahmad, M., Cellular metabolites enhance light sensitivity through alternate electron transfer pathways in Arabidopsis cryptochrome (2014) Plant Cell, 26, pp. 4519-4531
  • Gechev, T.S., Van Breusegem, F., Stone, J.M., Denev, I., Laloi, C., Reactive oxygen species as signals that modulate plant stress responses and programmed cell death (2006) BioEssays, 28, pp. 1091-1101
  • Guo, H., Duong, H., Ma, N., Lin, C., The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism (1999) Plant Journal, 19, pp. 279-287
  • Hoang, H.H., Sechet, J., Bailly, C., Leymarie, J., Corbineau, F., Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation (2014) Plant, Cell & Environment, 37, pp. 1393-1403
  • Holmström, K.M., Finkel, T., Cellular mechanisms and physiological consequences of redox-dependent signalling (2014) Nature Reviews Molecular Cell Biology, 15, pp. 411-421
  • Jeong, R.D., Chandra-Shekara, A.C., Barman, S.R., Navarre, D., Klessig, D.F., Kachroo, A., Kachroo, P., Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase (2010) Proceedings of the National Academy of Sciences, USA, 107, pp. 13538-13543
  • Kim, C., Apel, K., Singlet oxygen-mediated signaling in plants: moving from flu to wild type reveals an increasing complexity (2013) Photosynthesis Research, 116, pp. 455-464
  • Kleine, T., Kindgren, P., Benedict, C., Hendrickson, L., Strand, A., Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance (2007) Plant Physiology, 144, pp. 1391-1406
  • Kleiner, O., Kircher, S., Harter, K., Batschauer, A., Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2 (1999) Plant Journal, 19, pp. 289-296
  • Lariguet, P., Ranocha, P., De Meyer, M., Barbier, O., Penel, C., Dunand, C., Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis (2013) Planta, 238, pp. 381-395
  • Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., Lin, C., Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis (2008) Science, 322, pp. 1535-1539
  • Lopez, L., Carbone, F., Bianco, L., Giuliano, G., Facella, P., Perrotta, G., Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues (2012) Plant, Cell & Environment, 35, pp. 994-1012
  • Martino, C.F., Castello, P., Modulation of hydrogen peroxide production in cellular systems by low level magnetic fields (2011) PLoS ONE, 6, p. 1
  • Miller, G., Shulaev, V., Mittler, R., Reactive oxygen signaling and abiotic stress (2008) Physiologia Plantarum, 133, pp. 481-489
  • Mittler, R., Vanderauwera, S., Gollery, M., Van Breusegem, F., Reactive oxygen gene network of plants (2004) Trends in Plant Science, 9, pp. 490-498
  • Mittler, R., Vanderauwera, S., Suzuki, N., Miller, G., Tognetti, V.B., Vandepoele, K., Gollery, M., Van Breusegem, F., ROS signaling: the new wave? (2011) Trends in Plant Science, 16, pp. 300-309
  • Mottola, G., Jourdan, N., Castaldo, G., Malagolini, N., Lahm, A., Serafini-Cessi, F., Migliaccio, G., Bonatti, S., A new determinant of endoplasmic reticulum localization is contained in the juxtamembrane region of the ectodomain of hepatitis C virus glycoprotein E1 (2000) Journal of Biological Chemistry, 275, pp. 24070-24079
  • Müller, P., Ahmad, M., Light-activated cryptochrome reacts with molecular oxygen to form a flavin-superoxide radical pair consistent with magnetoreception (2011) Journal of Biological Chemistry, 286, pp. 21033-21040
  • Ollion, J., Cochennec, J., Loll, F., Escudé, C., Boudier, T., TANGO: a generic tool for high throughput 3D image analysis for studying nuclear organization (2013) Bioinformatics, 29, pp. 1840-1841
  • Orozco-Cardenas, M., Ryan, C.A., Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway (1999) Proceedings of the National Academy of Sciences, USA, 96, pp. 6553-6557
  • Quan, L.J., Zhang, B., Shi, W.W., Li, H.Y., Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network (2008) Journal of Integrative Plant Biology, 50, pp. 2-18
  • Sanchez, A., Shin, J., Davis, S.J., Abiotic stress and the plant circadian clock (2011) Plant Signaling & Behavior, 6, pp. 223-231
  • Sharma, P., Chatterjee, M., Burman, N., Khurana, J.P., Cryptochrome 1 regulates growth and development in Brassica through alteration in the expression of genes involved in light, phytohormone and stress signalling (2014) Plant, Cell & Environment, 37, pp. 961-977
  • Wu, L., Yang, H.Q., CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis (2010) Molecular Plant, 3, pp. 539-548
  • Xu, P., Ma, Z., Plant cryptochromes employ complicated mechanisms for subcellular localization and are involved in pathways apart from photomorphogenesis (2009) Plant Signaling & Behavior, 4, pp. 200-201
  • Xu, P., Xiang, Y., Zhu, H.L., Xu, H.B., Zhang, Z.Z., Zhang, C.Q., Zhang, L., Ma, Z., Wheat cryptochromes: subcellular localization and involvement in photomorphogenesis and osmotic stress responses (2009) Plant Physiology, 149, pp. 760-774
  • Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R., The C-termini of Arabidopsis cryptochromes mediate a constitutive light response (2000) Cell, 103, pp. 815-827
  • Zuo, Z., Liu, H., Liu, B., Liu, X., Lin, C., Blue light-dependent interaction of CRY2 with SPA1 regulates COP1 activity and floral initiation in Arabidopsis (2011) Current Biology, 21, pp. 841-847

Citas:

---------- APA ----------
Consentino, L., Lambert, S., Martino, C., Jourdan, N., Bouchet, P..-E., Witczak, J., Castello, P.,..., Ahmad, M. (2015) . Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytologist, 206(4), 1450-1462.
http://dx.doi.org/10.1111/nph.13341
---------- CHICAGO ----------
Consentino, L., Lambert, S., Martino, C., Jourdan, N., Bouchet, P..-E., Witczak, J., et al. "Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism" . New Phytologist 206, no. 4 (2015) : 1450-1462.
http://dx.doi.org/10.1111/nph.13341
---------- MLA ----------
Consentino, L., Lambert, S., Martino, C., Jourdan, N., Bouchet, P..-E., Witczak, J., et al. "Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism" . New Phytologist, vol. 206, no. 4, 2015, pp. 1450-1462.
http://dx.doi.org/10.1111/nph.13341
---------- VANCOUVER ----------
Consentino, L., Lambert, S., Martino, C., Jourdan, N., Bouchet, P..-E., Witczak, J., et al. Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism. New Phytol. 2015;206(4):1450-1462.
http://dx.doi.org/10.1111/nph.13341