Artículo

Lux-Lantos, V.; Becú-Villalobos, D.; Bianchi, M.; Rey-Roldán, E.; Chamson-Reig, A.; Pignataro, O.; Libertun, C. "GABAB receptors in anterior pituitary cells: Mechanism of action coupled to endocrine effects" (2001) Neuroendocrinology. 73(5):334-343
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The activation of pituitary GABAB receptors by the specific agonist baclofen inhibits pituitary hormone secretion in vitro. Here we studied the mechanism of action of GABAB receptors in rat adenohypophysis. Anterior pituitary cells were obtained by trypsinization and were either plated for hormonal studies and cAMP determination or incubated in FURA 2AM for calcium measurements. Baclofen (BACL: 1·10-5 M) significantly inhibited basal and thyrotropic releasing hormone (TRH)-stimulated (1·10-7 M) PRL secretion in anterior pituitary cells from proestrous rats. In the presence of pertussis toxin (PTX: 150 ng/ml, 20 h), which leads to the uncoupling of the Gi/o-protein from the receptor, both effects of BACL were abolished while the effect of dopamine (DA: 1·10-8 M), used as an inhibitory control, was reduced from 70 to 25%. PTX also reversed BACL-induced inhibition of gonadotropin-releasing hormone (GnRH)-elicited luteinizing hormone (LH) secretion in anterior pituitary cells from 15-day-old female rats. In addition, though working in a pituitary mixed cell population, in which only some cell types possess GABAB receptors, BACL (1·10-5 M) attenuated the forskolin-induced (0.5 μM) increase in cAMP. This effect was prevented by co-incubation with the antagonist 2 hydroxysaclofen and by preincubation with PTX. BACL (5·10-5 M) and DA (5·10-7 M) inhibited basal intracellular calcium concentrations ([Ca2+]i) in pituitary cells and the effect of the latter was significantly stronger. The effect of BACL on [Ca2+]i was abolished after preincubation with PTX. In the presence of the potassium channel blocking agents barium (200 μM and 1 mM) and tetraethylammonium (10 mM), BACL was still able to inhibit [Ca2+]i. Blockade of voltage-sensitive calcium channels (VSCC) with either verapamil (5·10-6 M) or nifedipine (1·10-6 M) completely abolished the effect of BACL on [Ca2+]i. In the presence of 12.5 mM potassium concentration baclofen significantly inhibited [Ca2+]i. In conclusion, our results describe the negative coupling of adenohypophyseal GABAB receptors to VSCC through PTX-sensitive G-proteins. These characteristics suggest a resemblance of these receptors to the typical presynaptic GABAB sites described in the central nervous system. Copyright © 2001 S. Karger AG, Basel.

Registro:

Documento: Artículo
Título:GABAB receptors in anterior pituitary cells: Mechanism of action coupled to endocrine effects
Autor:Lux-Lantos, V.; Becú-Villalobos, D.; Bianchi, M.; Rey-Roldán, E.; Chamson-Reig, A.; Pignataro, O.; Libertun, C.
Filiación:Department of Physiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
V. de Obligado 2490, RA-1428 Buenos Aires, Argentina
Palabras clave:Calcium; Cyclic AMP; G proteins; GABAB receptors; Gamma-aminobutyric acid; Gamma-aminobutyric acid receptors; Gonadotropin-releasing hormone; Gonadotropins; Prolactin; Thyrotropin-releasing hormone; 2 hydroxysaclofen; 4 aminobutyric acid B receptor; 4 aminobutyric acid B receptor blocking agent; baclofen; barium; calcium channel; calcium ion; cyclic AMP; dopamine; forskolin; fura 2 acetoxymethyl ester; gonadorelin; guanine nucleotide binding protein; hypophysis hormone; luteinizing hormone; nifedipine; pertussis toxin; potassium channel blocking agent; prolactin; protirelin; tetrylammonium; trypsin; verapamil; adenohypophysis; animal cell; animal tissue; article; calcium cell level; controlled study; female; hypophysis cell; luteinizing hormone release; nonhuman; presynaptic nerve; priority journal; proestrus; prolactin release; rat; receptor binding; Animals; Baclofen; Barium Compounds; Calcium; Calcium Channel Blockers; Cells, Cultured; Chlorides; Cyclic AMP; Dopamine; Female; Forskolin; Luteinizing Hormone; Pertussis Toxin; Pituitary Gland, Anterior; Potassium Channel Blockers; Potassium Chloride; Proestrus; Prolactin; Rats; Receptors, GABA-B; Tetraethylammonium; Thyrotropin-Releasing Hormone; Virulence Factors, Bordetella
Año:2001
Volumen:73
Número:5
Página de inicio:334
Página de fin:343
DOI: http://dx.doi.org/10.1159/000054650
Título revista:Neuroendocrinology
Título revista abreviado:Neuroendocrinology
ISSN:00283835
CODEN:NUNDA
CAS:Baclofen, 1134-47-0; barium chloride, 10361-37-2; Barium Compounds; Calcium Channel Blockers; Calcium, 7440-70-2; Chlorides; Cyclic AMP, 60-92-4; Dopamine, 51-61-6; Forskolin, 66428-89-5; Luteinizing Hormone, 9002-67-9; Pertussis Toxin, EC 2.4.2.31; Potassium Channel Blockers; Potassium Chloride, 7447-40-7; Prolactin, 9002-62-4; Receptors, GABA-B; Tetraethylammonium, 66-40-0; Thyrotropin-Releasing Hormone, 24305-27-9; Virulence Factors, Bordetella
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00283835_v73_n5_p334_LuxLantos

Referencias:

  • Tuomisto, J., Mannisto, P., Neurotransmitter regulation of anterior pituitary hormones (1985) Pharmacol Rev, 37, pp. 249-332
  • Libertun, C., McCann, S.M., The effect of aminooxyacetic acid and other amino acids on plasma prolactin in the rat (1976) IRCS Med Sci, 4, p. 374
  • Fiszer de Plazas, S., Becu, D., Mitridate de Novara, A., Libertum, C., GABA receptors in anterior pituitary and brain areas after median eminence lesions (1982) Endocrinology, 111, pp. 1974-1978
  • Virmani, M.A., Stojilkovic, S.S., Catt, K.J., Stimulation of luteinizing hormone release by γ-aminobutyric acid (GABA) agonists: Mediation by GABA A-type receptors and activation of chloride and voltage-sensitive calcium channels (1990) Endocrinology, 126, pp. 2499-2505
  • Lux, V.A.R., D'Eramo, J.L., Somoza, G.M., Libertun, C., Participation of GABA B binding sites on brain control of pituitary secretion: Effect of baclofen (1986) Advances in Biochemical Psychopharmacology, 42, pp. 145-153
  • Lux-Lantos, V.A.R., Somoza, G.M., Rey, E.B., Libertun, C., Further evidence for the inhibitory action of baclofen on a prolactin-releasing factor (1991) Proc Soc Exp Biol Med, 197, pp. 337-341
  • Lux-Lantos, V.A.R., Rey, E.B., Libertun, C., Activation of GABA B receptors in the anterior pituitary inhibits prolactin and luteinizing hormone secretion (1992) Neuroendocrinology, 56, pp. 687-693
  • Rey-Roldán, E.B., Lux-Lantos, V.A.R., Gonzalez Iglesias, A., Becu-Villalobos, D., Libertun, C., Baclofen, a gamma-aminobutyric acid B agonist, modifies hormonal secretion in pituitary cells from infantile female rats (1996) Life Sci, 58, pp. 1059-1065
  • Rey-Roldán, E.B., Lux-Lantos, V., Chamson-Reig, A., Libertun, C., In vivo interactions of baclofen, TRH and serotonin on PRL and TSH secretion in the developing and adult male and female rats (1997) Life Sci, 61, pp. 2283-2290
  • Kaupmann, K., Huggel, K., Heid, J., Flor, P., Bischoff, S., Mickel, S., McMaster, G., Bettler, B., Expression cloning of GABA B receptors uncovers similarity to metabotropic glutamate receptors (1997) Nature, 386, pp. 239-246
  • Kuner, R., Köhr, G., Grünewald, S., Eisenhardt, G., Bach, A., Kornau, H., Role of heteromer formation in GABA receptor function (1999) Science, 283, pp. 74-77
  • White, J., Wise, A., Main, M., Heterodimerization is required for the formation of a functional GABAB receptor (1998) Nature, 396, pp. 679-682
  • Bettler, B., Kaupmann, K., Bowery, N.G., GABA B receptors - Drugs meet clones (1998) Curr Opin Neurobiol, 8, pp. 345-350
  • Kaupmann, K., Malitschek, B., Schuler, B., Heid, J., Froestl, W., Beck, P., Mosbacher, J., Bettler, B., GABA B receptor subtypes assemble into functional heteromeric complexes (1998) Nature, 396, pp. 683-687
  • Bowery, N.G., Brown, D., The cloning of GABA B receptors (1997) Nature, 386, pp. 223-224
  • Chamson-Reig, A., Pignataro, O.P., Libertun, C., Lux-Lantos, V., Alterations in intracellular messengers mobilized by gonadotropin-releasing hormone in an experimental ovarian tumor (1999) Endocrinology, 148, pp. 3573-3580
  • Grynkiewicz, G., Poenie, M., Tsien, R.Y., A new generation of Ca2+ indicators with greatly improved fluorescence properties (1985) J Biol Chem, 260, pp. 3440-3450
  • Del Punta, K., Charreau, E., Pignataro, O.P., Nitric oxide inhibits Leydig cell steroidogenesis (1996) Endocrinology, 137, pp. 5337-5343
  • Becu-Villalobos, D., Gonzalez Iglesias, A., Díaz-Torga, G., Hockl, P., Libertun, C., Brain sexual differentiation and gonadotropins secretion in the rat (1997) Cell Mol Neurobiol, 17, pp. 699-715
  • Anderson, R., Mitchell, R., Effects of gamma-aminobutyric acid receptor agonist on the secretion of growth hormone, luteinizing hormone, adrenocorticotrophic hormone and thyroid-stimulating hormone from the rat pituitary gland in vitro (1986) J Endocrinol, 108, pp. 1-8
  • Anderson, R., Mitchell, R., Distribution of GABA binding sites subtypes in rat pituitary gland (1986) Brain Res, 365, pp. 78-84
  • Bianchi, M.S., Rey-Roldán, E.B., Bettler, B., Ontogenic expression of anterior pituitary GABAB receptor subunits (2001) Neuropharmacology, 40, pp. 185-192
  • Tapia-Arancibia, L., Roussel, J.P., Astier, H., Evidence for a dual effect of γ-aminobutyric acid (GABA) on TSH-releasing hormone-induced TSH release from perifused rat pituitary (1987) Endocrinology, 121, p. 980
  • Shibuya, I., Kongsamut, S., Douglas, W., Effectiveness of GABA B antagonists in inhibiting baclofen-induced reductions in cytosolic free Ca concentrations in isolated melanotrophs of rat (1992) Br J Pharmacol, 105, pp. 893-899
  • Shibuya, I., Kongsamut, S., Douglas, W., Both GABA A and GABA B receptors participate in suppression of [Ca2+]i pulsing in toad melanotrophs (1997) Eur J Pharmacol, 321, pp. 241-246
  • Kamatchi, G., Ticku, M., GABA B receptor activation inhibits Ca2+-activated 86Rb-efflux in cultures spinal cord neurons via G-protein mechanism (1990) Brain Res, 506, pp. 181-186
  • Alford, S., Grillner, S., The involvement of GABA B receptors and coupled G-proteins in spinal GABAergic presynaptic inhibition (1991) J Neurosci, 11, pp. 3718-3726
  • Kardos, J., Elster, L., Damgaard, I., Krogsgaard-Larsen, P., Schoubsoe, A., Role of GABA B receptors in intracellular Ca2+ homeostasis and possible interaction between GABA A and GABA B receptors in regulation of transmitter release in cerebellar granule neurons (1994) J Neurosci Res, 39, pp. 646-655
  • Innis, R., Nestler, E., Aghajanian, G., Evidence for G protein mediation of serotonin- and GABA B-induced hyperpolarization of rat dorsal raphe neurons (1988) Brain Res, 459, pp. 27-36
  • Musset, F., Bertrand, P., Kordon, C., Enjalbert, A., Differential coupling with pertussis toxin-sensitive G proteins of dopamine and somatostatin receptors involved in regulation of adenohypophyseal secretion (1990) Mol Cell Endocrinol, 73, pp. 1-10
  • Loose, M.D., Ronnekleiv, O.K., Kelly, M.J., Neurons in the rat arcuate nucleus are hyperpolarized by GABAB and μ-opioid receptor agonist: Evidence for convergence at a ligand-gated potassium conductance (1991) Neuroendocrinol, 54, pp. 537-544
  • Scott, R., Dolphin, A., Regulation of calcium currents by a GTP analogue: Potentiation of (-)-baclofen-mediated inhibition (1986) Neurosci Lett, 69, pp. 59-64
  • Soltesz, I., Haby, M., Leresche, N., Crunelli, V., The GABA B antagonist phaclofen inhibits the late K+-dependent IPSP in cat and rat thalamic and hippocampal neurons (1988) Brain Res, 448, pp. 351-354
  • Nishikawa, M., Kuriyama, K., Functional couplin of cerebral γ-aminobutyric acid (GABA) B receptor with adenylate cyclase system: Effect of phaclofen (1989) Neurochemistry Int, 14, pp. 85-90
  • Stojilkovic, S.S., Izumi, S.I., Catt, K.J., Participation of voltage-sensitive calcium channels in pituitary hormone release (1988) J Biol Chem, 263, pp. 13054-13061
  • Buzzi, M., Bemelmans, F., Roubos, E., Jenks, B., Neuroendocrine γ-aminobutyric acid (GABA): Functional differences in GABA A versus GABA B receptor inhibition of the melanotrope cell of Xenopus laevis (1997) Endocrinology, 138, pp. 203-212
  • Horváth, G., Ács, Z., Mergl, Z., Nagy, I., Makara, G.B., Gamma-aminobutyric acid-induced elevation of intracellular calcium concentration in pituitary cells of neonatal rats (1993) Neuroendocrinology, 57, pp. 1028-1034
  • Lorsignol, A., Taupignon, A., Dufy, B., Short applications of gamma-aminobutyric acid increase intracellular calcium concentrations in single identified rat lactotrophs (1994) Neuroendocrinology, 60, pp. 389-399
  • Deisz, R., Billard, J., Zieglgänsberger, W., Presynaptic and postsynaptic GABA B receptors of neocortical neurons of the rat in vitro: Differences in pharmacology and ionic mechanisms (1997) Synapse, 25, pp. 62-72
  • Ho, M., Kao, J., Gregerson, K., Dopamine withdrawal elicits prolonged calcium rise to support prolactin rebound release (1996) Endocrinology, 137, pp. 3513-3521
  • Wang, X., Sato, N., Greer, M., Faraldeau, P., Pituitary PRL secretion induced by tetraethylammonium is inhibited by dopamine through D2 receptors (1995) Mol Cell Endocrinol, 112, pp. 153-157
  • Castelletti, L., Memo, M., Missale, C., Spano, P., Valerio, A., Potassium channels involved in the transduction mechanism of dopamine D2 receptors in rat lactotrophs (1989) J Physiol, 410, pp. 251-265
  • Gardette, R., Rasolonjanahary, R., Kordon, C., Enjalbert, A., Epidermal growth factor treatment induces D2 dopamine receptors functionally coupled to delayed outward potassium current (IK) in GH4C1 clonal anterior pituitary cells (1994) Neuroendocrinology, 59, pp. 10-19
  • Amico, C., Marchetti, C., Nobile, M., Usai, C., Pharmacological types of calcium channels and their modulation by baclofen in cerebellar granules (1995) J Neurosci, 15, pp. 2839-2848
  • Scholtz, K., Miller, R., GABA B receptor-mediated inhibition of Ca2+ currents and synaptic transmission in cultured rat hippocampal neurons (1991) J Physiol, 444, pp. 669-686
  • Huston, E., Cullen, G., Burley, J., Dolphin, A., The involvement of multiple calcium channel subtypes in glutamate release from cerebellar granule cells and its modulation by GABA B receptor activation (1995) Neurosciences, 68, pp. 465-478
  • Hirata, K., Ohno-Shosaku, T., Sawada, S., Yamamoto, C., Baclofen inhibits GABAergic transmission after treatment with type-specific calcium channel blockers in cultures of rat hippocampal neurons (1995) Neurosci Lett, 187, pp. 205-208
  • Obrietan, K., Van den Pol, A., GABA B receptor-mediated inhibition of GABA A receptor calcium elevations in developing hypothalamic neurons (1998) Am J Physiol, 79, pp. 1360-1370
  • Isomoto, S., Kibara, M., Sakurai-Yamashita, Y., Cloning and tissue distribution of novel splice variants of the rat GABAB receptor (1998) Biochem Biophys Res Commun, 253, pp. 10-15
  • Billinton, A., Upton, N., Bowery, N.G., GABA(B) receptor isoforms GBR1a and GBR1b appear to be associated with pre- and post-synaptic elements respectively in rat and human cerebellum (1999) Br J Pharmacol, 126, pp. 1387-1392

Citas:

---------- APA ----------
Lux-Lantos, V., Becú-Villalobos, D., Bianchi, M., Rey-Roldán, E., Chamson-Reig, A., Pignataro, O. & Libertun, C. (2001) . GABAB receptors in anterior pituitary cells: Mechanism of action coupled to endocrine effects. Neuroendocrinology, 73(5), 334-343.
http://dx.doi.org/10.1159/000054650
---------- CHICAGO ----------
Lux-Lantos, V., Becú-Villalobos, D., Bianchi, M., Rey-Roldán, E., Chamson-Reig, A., Pignataro, O., et al. "GABAB receptors in anterior pituitary cells: Mechanism of action coupled to endocrine effects" . Neuroendocrinology 73, no. 5 (2001) : 334-343.
http://dx.doi.org/10.1159/000054650
---------- MLA ----------
Lux-Lantos, V., Becú-Villalobos, D., Bianchi, M., Rey-Roldán, E., Chamson-Reig, A., Pignataro, O., et al. "GABAB receptors in anterior pituitary cells: Mechanism of action coupled to endocrine effects" . Neuroendocrinology, vol. 73, no. 5, 2001, pp. 334-343.
http://dx.doi.org/10.1159/000054650
---------- VANCOUVER ----------
Lux-Lantos, V., Becú-Villalobos, D., Bianchi, M., Rey-Roldán, E., Chamson-Reig, A., Pignataro, O., et al. GABAB receptors in anterior pituitary cells: Mechanism of action coupled to endocrine effects. Neuroendocrinology. 2001;73(5):334-343.
http://dx.doi.org/10.1159/000054650