Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Aging is associated with a disturbance in the regulation of the hypothalamic-pituitary-adrenal axis (HPA) and reduced levels of glucocorticoid receptors (GR) in the hippocampus. To compensate for these effects, we have investigated whether estrogen therapy normalized the HPA response to stress and GR in hippocampus and paraventricular (PVN) nucleus. Young (3-4 months) and old (20 months) male Sprague-Dawley rats were bled by tail cut in the basal state and following ether stress. While basal and ether-stimulated levels of plasma corticosterone (CORT) were similar in the two groups, old animals presented a delayed termination of the response to ether stress. A dexamethasone inhibition test carried out in old animals, showed a failure to completely block plasma CORT after ether stimulation. Furthermore, in old rats GR-immunoreactive levels were reduced in CA1-CA2 hippocampal subfields and subiculum, while normal levels were obtained in CA3-CA4 and PVN. We observed that prolonged estrogen treatment (6 weeks) of old rats normalized the termination of the stress response, restored dexamethasone inhibition of plasma CORT, and increased GR immunoreactivity in CA1 and CA2 hippocampal subfields and subiculum. The results suggest that estrogen treatment enhanced the glucocorticoid feedback signal by increasing GR in hippocampus, and corrected the disturbances in HPA axis regulation. These animal experiments may be important to elucidate the effects of estrogenic on the hippocampal and HPA dysfunction associated with aging and Alzheimer's disease in humans.

Registro:

Documento: Artículo
Título:Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats
Autor:Ferrini, M.; Piroli, G.; Frontera, M.; Falbo, A.; Lima, A.; De Nicola, A.F.
Filiación:Lab. of Neuroendocrine Biochemistry, Inst. de Biol. y Med. Experimental, UBA-CONICET, Buenos Aires, Argentina
Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
Chair of Cell Biology and Histology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
Inst. Univ. de Ciencias de la Salud, Fundación Barceló, Buenos Aires, Argentina
Lab. of Neuroendocrine Biochemistry, Inst. de Biol. y Med. Experimental, Obligado 2490, 1428 Buenos Aires, Argentina
Palabras clave:Adrenal steroid receptors; Adrenal steroids; Aging; Corticotropin; Gonadal steroids; Hippocampus; Stress; corticosterone; estrogen; glucocorticoid receptor; aging; Alzheimer disease; animal experiment; animal tissue; article; controlled study; corticosterone blood level; estrogen therapy; feedback system; hippocampus; hypothalamus hypophysis adrenal system; immunoreactivity; male; nonhuman; priority journal; rat; stress; subiculum; Adrenal Glands; Aging; Animals; Corticosterone; Estradiol; Ether, Ethyl; Hippocampus; Hypothalamus; Kinetics; Male; Organ Size; Pituitary Gland; Rats; Rats, Sprague-Dawley; Receptors, Glucocorticoid; Stress
Año:1999
Volumen:69
Número:2
Página de inicio:129
Página de fin:137
DOI: http://dx.doi.org/10.1159/000054411
Título revista:Neuroendocrinology
Título revista abreviado:Neuroendocrinology
ISSN:00283835
CODEN:NUNDA
CAS:Corticosterone, 50-22-6; Estradiol, 50-28-2; Ether, Ethyl, 60-29-7; Receptors, Glucocorticoid
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00283835_v69_n2_p129_Ferrini

Referencias:

  • Lanfield, P.W., Waymire, J.C., Lynch, G., Hippocampal aging and adrenocorticoids: Quantitative correlations (1978) Science, 202, pp. 1098-1101
  • Sapolsky, R., Krey, L.C., McEwen, B.S., The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis (1986) Endocr Rev, 7, pp. 284-304
  • Sonntag, W.E., Goliszek, A.G., Brodish, A., Eldridge, J.E., Diminished diurnal secretion of adrenocorticotropin (ACTH) but not corticosterone, in old male rats: Possible relation to increased adrenal sensitivity to ACTH in vivo (1987) Endocrinology, 120, pp. 2308-2315
  • Issa, A., Rowe, W., Gauthier, S., Meaney, M., Hypothalamic-pituitary-adrenal activity in aged, cognitively unimpaired rats (1990) J Neurosci, 10, pp. 3247-3254
  • Lorens, S.A., Hata, N., Handa, R.J., Van Der Kar, L.D., Guschwan, M., Goral, J., Lee, J.M., Clancy, J., Neurochemical, endocrine and immunological responses to stress in young and old Fischer 344 male rats (1990) Neurobiol Aging, 11, pp. 139-150
  • Pfeiffer, A., Barden, N., Meaney, M.J., Age-related changes in glucocorticoid receptor binding and mRNA levels in the rat brain and pituitary (1991) Neurobiol Aging, 12, pp. 475-479
  • Sapolsky, R., Do glucocorticoid concentrations rise with age in the rat? (1991) Neurobiol Aging, 13, pp. 171-174
  • Van Eekelen, J.A.M., Rots, N.Y., Sutanto, W., De Kloet, E.R., The effect of aging on stress responsiveness and central corticosteroid receptors in the Brown Norway rat (1991) Neurobiol Aging, 13, pp. 159-170
  • Cizza, G., Calogero, A.E., Brady, L.S., Bagdy, G., Bergamini, E., Blackmail, M.R., Chrousos, G.P., Gold, P.W., Male Fischer 344/N rats show a progressive central impairment of the hypothalamic-pituitary-adrenal axis with advancing age (1994) Endocrinology, 134, pp. 1611-1620
  • Morano, M.I., Vazquez, D.M., Akil, H., The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo-pituitary-adrenal axis of the aged Fischer rat (1994) Mol Cell Neurosci, 5, pp. 400-412
  • Cai, A., Wise, P.M., Age-related changes in the diurnal rhythm of CRH gene expression in the paraventricular nuclei (1996) Am J Physiol, 33, pp. E238-E243
  • Reul, J.M.H.M., De Kloet, E.R., Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation (1985) Endocrinology, 117, pp. 2505-2511
  • McEwen, B.S., Cameron, H., Chao, H.M., Gould, E., Magariños, A.M., Watanabe, Y., Wooley, C.S., Adrenal steroid and plasticity of hippocampal neurons: Toward an understanding of underlying cellular and molecular mechanisms (1993) Cell Mol Neurobiol, 13, pp. 457-482
  • Tornello, S., Orti, E., De Nicola, A.F., Rainbow, T.C., McEwen, B.S., Regulation of glucocorticoid receptors in brain by corticosterone treatment of adrenalectomized rats (1982) Neuroendocrinology, 35, pp. 411-417
  • Watanabe, Y., Gould, E., McEwen, B.S., Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons (1992) Brain Res, 588, pp. 341-345
  • Woolley, C.S., Gould, E., McEwen, B.S., Exposure to excess gluocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons (1990) Brain Res, 531, pp. 225-231
  • Lanfield, P., Eldridge, C., Increased affinity of type II corticosteroid binding in aged rat hippocampus (1989) Exp Neurol, 106, pp. 110-113
  • Rachmanin, G., Lutge, W., Hunter, B., Walker, D., Neither chronic exposure to ethanol nor aging affects type I or type II corticosteroid receptors in rat hippocampus (1989) Exp Neurol, 106, pp. 164-171
  • McEwen, B.S., Re-examination of the glucocorticoid hypothesis of stress and aging (1992) Progr Brain Res, 93, pp. 365-383
  • Seckl, J.R., Olsson, T., Glucocorticoid hypersecretion and the age-impaired hippocampus (1995) J Endocrinol, 145, pp. 201-211
  • Weiland, N.G., Orisaka, C., Hayashi, S., McEwen, B.S., Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats (1997) J Comp Neurol, 388, pp. 603-612
  • Kuiper, G.G.J., Carlsson, B., Grandien, K., Enmark, E., Haggblad, J., Nilsson, S., Gustaffson, J.-A., Comparison of the ligand bindings specificity and transcript tissue distribution of estrogen receptors α and β (1997) Endocrinology, 138, pp. 863-870
  • Shugrue, P.J., Lane, M.V., Merchenthaler, I., Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system (1997) J Comp Neurol, 388, pp. 507-525
  • Gould, E., Wooley, C.S., Frankfurt, M., McEwen, B.S., Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood (1990) J Neurosci, 10, pp. 1286-1291
  • Woolley, C.S., McEwen, B.S., Estradiol regulated hippocampal dendritic spine density via an N-metyl-D-aspartate receptor-dependent mechanism (1994) J Neurosci, 14, pp. 7680-7687
  • Henderson, V., The epidemiology of estrogen replacement therapy and Alzheimer's disease (1997) Neurology, 48 (SUPPL. 7), pp. S27-S35
  • Goodman, Y., Bruce, A.J., Cheng, B., Mattson, M.P., Estrogens attenuate and corticosterone exacerbates excitotoxicity, oxidative injury, and amyloid β-peptide toxicity in hippocampal neurons (1996) J Neurochem, 66, pp. 1836-1844
  • Behl, C., Widmann, M., Trapp, T., Holsboer, F., 17β-Estradiol protects neurons from oxidative stress-induced cell death in vitro (1995) Biochem Biophys Res Commun, 216, pp. 473-482
  • Regan, R.F., Guo, Y., Estrogens attenuate neuronal injury due to hemoglobin, chemical hypoxia, and excitatory amino acids in murine cortical cultures (1997) Brain Res, 764, pp. 133-140
  • Viau, V., Meaney, M.J., Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat (1991) Endocrinology, 129, pp. 2503-2511
  • Pfeiffer, A., Lapointe, B., Barden, N., Hormonal regulation of type II gluocorticoid receptor messenger ribonucleic acid in rat brain (1991) Endocrinology, 129, pp. 2166-2174
  • Redei, E., Li, L., Halasz, I., McGivern, R.F., Aird, F., Fast glucocorticoid feedback inhibition of ACTH secretion in the ovariectomized rat: Effect of chronic estrogen and progesterone (1994) Neuroendocrinology, 60, pp. 113-126
  • Ferrini, M., De Nicola, A.F., Estrogens up-regulate type I and type II glucocorticoid receptors in brain regions from ovariectomized rats (1991) Life Sci, 48, pp. 2593-2601
  • Ferrini, M., Lima, A., De Nicola, A.F., Estradiol abolishes down-regulation of glucocorticoid receptors in brain (1995) Life Sci, 57, pp. 2403-2412
  • Ferrini, M., Grillo, C., Piroli, G., De Kloet, E.R., De Nicola, A.F., Sex differences in glucocorticoid regulation of vasopressin mRNA in the paraventricular hypothalamic nucleus (1997) Cell Mol Neurobiol, 17, pp. 671-686
  • Lindheim, S.R., Legro, R.S., Bernstein, L., Behavioral stress responses in premenopausal and postmenopausal women and the effects of estrogen (1992) Am J Obstet Gynecol, 167, pp. 1831-1836
  • Meites, J., Nicoll, C.S., Adenohypophysis prolactin (1966) Ann Rev Physiol, 28, pp. 57-88
  • Weisenberg, L., Fridman, O., Libertun, C., De Nicola, A.F., Changes in nuclear translocation of estradiol-receptor complex in anterior pituitary and uterus of rats with streptozotocin diabetes (1983) J Steroid Biochem Mol Biol, 19, pp. 1737-1741
  • Magarinos, A.M., Somoza, G., De Nicola, A.F., Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats (1987) Horm Metab Res, 19, pp. 105-109
  • Piroli, G., Grillo, C., Lux De Lantos, V., Libertun, C., De Nicola, A.F., Glucocorticoid receptors and inhibition of serum prolactin by dexamethasone are reduced in rats with estrogen-induced pituitary tumors (1991) Neuroendocrinol Lett, 13, pp. 75-81
  • Fuxe, K., Wikstrom, A.C., Okret, S., Agnati, L.F., Harfstrand, A., Yu, Z.-Y., Granholm, L., Gustafsson, J.-A., Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor (1985) Endocrinology, 117, pp. 1803-1812
  • Van Eckelen, J.A.M., Kiss, J.Z., Westphal, H.M., De Kloet, E.R., Immunocytochemical study on the intracellular localization of the type 2 glucocorticoid receptor in the rat brain (1987) Brain Res, 436, pp. 120-128
  • Herman, J.P., Schafer, M.K.H., Young, A., Thompson, R., Douglas, J., Akil, H., Watson, S.J., Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis (1989) J Neurosci, 9, pp. 3072-3082
  • Hatzinger, M., Reul, J.M.H.M., Landgraf, R., Holsboer, F., Neumann, I., Combined dexamethasone/CRH test in rats: Hypothalamo-pituitary-adrenocortical system alterations in aging (1996) Neuroendocrinology, 64, pp. 349-356
  • O'Brien, J.T., Schweitzer, I., Ames, D., Tuckwell, V., Mastwyck, M., Cortisol suppression by dexamethasone in the healthy elderly: Effects of age, dexamethasone levels, and cognitive function (1994) Biol Psychiatry, 36, pp. 389-394
  • Wilkstrom, A.-N., Bakke, O., Okret, S., Bronnegard, M., Gustafsson, J.-A., Intracellular localization of the glucocorticoid receptor: Evidence for cytoplasmic and nuclear localization (1987) Endocrinology, 120, pp. 1232-1242
  • Patchev, V., Hayashi, S., Onkasa, C., Almeida, O.F.X., Implications of estrogen-dependenl brain organization for gender differences in hypothalamo-pituitary-adrenal regulation (1995) FASEB J, 9, pp. 419-423
  • Turner, B.B., Sex differences in the binding of type I and type II corticosteroid receptors in rat hippocampus (1992) Brain Res, 581, pp. 229-236
  • Turner, B.B., Influence of gonadal steroid on brain corticosteroid receptors: A minireview (1997) Neurochem Res, 22, pp. 1375-1385
  • Luine, V.N., Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats (1985) Exp Neurol, 89, pp. 484-490
  • Gibbs, R., Effects of estrogens on basal forebrain cholinergic neurons vary as a function of dose and duration of treatment (1997) Brain Res, 757, pp. 10-16
  • Yau, J.L.W., Dow, R.C., Fink, G., Seckl, J.R., Medial septal lesions increase hippocampal mineralocorticoid and glucocorticoid receptor messenger RNA expression (1992) Brain Res, 577, pp. 155-160
  • De Kloet, E.R., Brain corticosteroid receptor balance and homeostatic control (1991) Front Neuroendocrinol, 12, pp. 95-164
  • Oxenkrug, G.F., Pomara, N., McIntyre, I.M., Branconier, R.J., Staley, M., Gershon, S., Aging and cortisol resistance to suppression by dexamethasone: A positive correlation (1983) Psychiatry Res, 10, pp. 125-130
  • De Leon, M.J., Mcrae, T., Tsai, J.R., George, A.E., Marcus, D.L., Freedman, M., Wolf, A.P., McEwen, B.S., Abnormal cortisol response in Alzheimer's disease linked to hippocampal atrophy (1988) Lancet, 2, pp. 391-392

Citas:

---------- APA ----------
Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A. & De Nicola, A.F. (1999) . Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats. Neuroendocrinology, 69(2), 129-137.
http://dx.doi.org/10.1159/000054411
---------- CHICAGO ----------
Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A., De Nicola, A.F. "Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats" . Neuroendocrinology 69, no. 2 (1999) : 129-137.
http://dx.doi.org/10.1159/000054411
---------- MLA ----------
Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A., De Nicola, A.F. "Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats" . Neuroendocrinology, vol. 69, no. 2, 1999, pp. 129-137.
http://dx.doi.org/10.1159/000054411
---------- VANCOUVER ----------
Ferrini, M., Piroli, G., Frontera, M., Falbo, A., Lima, A., De Nicola, A.F. Estrogens normalize the hypothalamic-pituitary-adrenal axis response to stress and increase glucocorticoid receptor immunoreactivity in hippocampus of aging male rats. Neuroendocrinology. 1999;69(2):129-137.
http://dx.doi.org/10.1159/000054411