Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield (Φf) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides (Φf=0.030) and for Citrus aurantium petals (Φf=0.014) and stigma (Φf=0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors. © 2010 Springer-Verlag.

Registro:

Documento: Artículo
Título:Is the flower fluorescence relevant in biocommunication?
Autor:Iriel, A.; Lagorio, M.G.
Filiación:INQUIMAE, Dpto. de Química Inorgánica, Analítica y Qca. Física, Ciudad Universitaria, Pabellón II, 1er piso, C1428EHA, Buenos Aires, Argentina
Palabras clave:Bee photosensors; Birds photosensors; Pollinators; Quantum catches; Visual signaling; bee; bird; dicotyledon; fluorescence; physiological response; quantitative analysis; visual cue; article; citrus fruit; color; flower; fluorescence; interpersonal communication; light; Ornithogalum; photon; physiology; spectrophotometry; Citrus; Color; Communication; Flowers; Fluorescence; Light; Ornithogalum; Photons; Spectrophotometry; Antirrhinum; Antirrhinum majus; Apoidea; Aves; Bellis perennis; Bougainvillea spectabilis; Citrus aurantium; Eustoma grandiflorum; Lampranthus; Limonium sinuatum; Ornithogalum; Ornithogalum thyrsoides; Petunia; Petunia nyctaginiflora; Portulaca grandiflora; Portulacaceae
Año:2010
Volumen:97
Número:10
Página de inicio:915
Página de fin:924
DOI: http://dx.doi.org/10.1007/s00114-010-0709-4
Título revista:Naturwissenschaften
Título revista abreviado:Naturwissenschaften
ISSN:00281042
CODEN:NATWA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00281042_v97_n10_p915_Iriel

Referencias:

  • Andersen, ØM., Jordheim, M., The anthocyanins (2006) Flavonoids: Chemistry, Biochemistry and Applications, pp. 471-537. , ØM Andersen K.R. Markham (eds). CRC Press Boca Raton
  • Andrews, K., Reed, S.M., Masta, S.E., Spiders fluoresce variably across many taxa (2007) Biol Lett, 3, pp. 265-267. , 10.1098/rsbl.2007.0016 10.1098/rsbl.2007.0016 17412670
  • Arnold, K.E., Owens, I.P.F., Marshall, N.J., Fluorescent signaling in parrots (2002) Science, 295 (5552), p. 92. , DOI 10.1126/science.295.5552.92
  • Bowmaker, J.K., Evolution of vertebrate visual pigments (2008) Vis Res, 48, pp. 2022-2041. , 10.1016/j.visres.2008.03.025 1:CAS:528:DC%2BD1cXhtFWls7vM 10.1016/j.visres.2008.03.025 18590925
  • Briscoe, A.D., Chittka, L., The evolution of color vision in insects (2001) Annual Review of Entomology, 46, pp. 471-510. , DOI 10.1146/annurev.ento.46.1.471
  • Chittka, L., Kevan, P.G., Flower colour as advertisement (2005) Practical Pollination Biology, , A. Dafni P.G. Kevan B.C. Husband (eds). Enviroquest Ltd. Cambridge
  • Davies, K.L., Stpiczynska, M., Gregg, A., Nectar-secreting floral stomata in Maxillaria anceps Ames & C. Schweinf. (Orchidaceae) (2005) Annals of Botany, 96 (2), pp. 217-227. , DOI 10.1093/aob/mci182
  • Dyer, A.G., Chittka, L., Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks (2004) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 190 (9), pp. 759-763. , DOI 10.1007/s00359-004-0547-y
  • Dyer, A.G., Neumeyer, C., Simultaneous and successive colour discrimination in the honeybee (Apis mellifera) (2005) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191 (6), pp. 547-557. , DOI 10.1007/s00359-005-0622-z
  • Dyer, A.G., Whitney, H.M., Arnold, S.E.J., Glober, B.J., Chittka, L., Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour (2007) Arthropod-Plant Interactions, 1, pp. 45-55. , 10.1007/s11829-007-9002-7 10.1007/s11829-007-9002-7
  • Gandia-Herrero, F., Garcia-Carmona, F., Escribano, J., Botany: Floral fluorescence effect (2005) Nature, 437 (7057), p. 334. , DOI 10.1038/437334a, PII 437334
  • Gandia-Herrero, F., Escribano, J., Garcia-Carmona, F., Betaxanthins as pigments responsible for visible fluorescence in flowers (2005) Planta, 222 (4), pp. 586-593. , DOI 10.1007/s00425-005-0004-3
  • Giurfa, M., Conditioning procedure and color discrimination in the honeybee Apis mellifera (2004) Naturwissenschaften, 91 (5), pp. 228-231. , DOI 10.1007/s00114-004-0530-z
  • Hart, N.S., The visual ecology of avian photoreceptors (2001) Progress in Retinal and Eye Research, 20 (5), pp. 675-703. , DOI 10.1016/S1350-9462(01)00009-X, PII S135094620100009X
  • Iriel, A., Lagorio, M.G., Biospectroscopy of Rhododendron indicum flowers. Non-destructive assessment of anthocyanins in petals using a reflectance-based method (2009) Photochem Photobiol Sci, 3, pp. 337-344. , 10.1039/b814461c 10.1039/b814461c
  • Iriel, A., Lagorio, M.G., Implications of reflectance and fluorescence of Rhododendron indicum flowers in biosignaling (2010) Photochem Photobiol Sci, 9, pp. 342-348. , 10.1039/b9 pp 00104b 1:CAS:528:DC%2BC3cXjtVWnsrg%3D 10.1039/b9pp00104b 20221460
  • Kelber, A., Vorobyev, M., Osorio, D., Animal colour vision - Behavioural tests and physiological concepts (2003) Biological Reviews of the Cambridge Philosophical Society, 78 (1), pp. 81-118. , DOI 10.1017/S1464793102005985
  • Kevan, P.G., Fluorescent nectar (1976) Science, 194, pp. 341-342. , 1:STN:280:DC%2BC3czpvFSluw%3D%3D 10.1126/science.194.4262.341 17738051
  • Lim, M.L.M., Land, M.F., Li, D., Sex-specific UV and fluorescence signals in jumping spiders (2007) Science, 315 (5811), p. 481. , DOI 10.1126/science.1134254
  • Maier, E.J., Ultraviolet vision in a passeriform bird: From receptor spectral sensitivity to overall spectral sensitivity in Leiothrix lutea (1994) Vision Research, 34 (11), pp. 1415-1418. , DOI 10.1016/0042-6989(94)90141-4
  • Tanaka, Y., Sasaki, N., Ohmiya, A., Biosynthesis of plant pigments: Anthocyanins, betalains and carotenoids (2008) Plant Journal, 54 (4), pp. 733-749. , DOI 10.1111/j.1365-313X.2008.03447.x
  • Peitsch, D., Fietz, A., Hertel, H., De Souza, J., Fix Ventura, D., Menzel, R., The spectral input system of hymenopteran insects and their receptor-based colour vision (1992) J Comp Physiol A, 170, pp. 23-40. , 10.1007/BF00190398 1:STN:280:DyaK383ktlelsQ%3D%3D 10.1007/BF00190398 1573568
  • Smith, V.C., Pokorny, J., Color matching and color discrimination (2003) Science of Color, pp. 117-120. , S.K. Shevell (eds). 2 Elsevier Oxford
  • Stintzing, F.C., Carle, R., Functional properties of anthocyanins and betalains in plants, food, and in human nutrition (2004) Trends in Food Science and Technology, 15 (1), pp. 19-38. , DOI 10.1016/j.tifs.2003.07.004
  • Ono, E., Fukuchi-Mizutani, M., Nakamura, N., Fukui, Y., Yonekura-Sakakibara, K., Yamaguchi, M., Nakayama, T., Tanaka, Y., Yellow flowers generated by expression of the aurone biosynthetic pathway (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (29), pp. 11075-11080. , DOI 10.1073/pnas.0604246103
  • Thorp, R.W., Briggs, D.L., Estes, J.R., Erickson, E.H., Nectar fluorescence under ultraviolet irradiation (1975) Science, 189, pp. 476-478. , 10.1126/science.189.4201.476 1:STN:280:DC%2BC3cvgvVagsw%3D%3D 10.1126/science.189.4201.476 17781886
  • Vorobyev, M., Marshall, J., Osorio, D., Hempel De Ibarra, N., Menzel, R., Colorful objects through animal eyes (2001) Color Res Appl, 26, pp. S214-S217. , 10.1002/1520-6378(2001) 26:1+<::AID- COL45>3.0.CO;2-A 10.1002/1520-6378(2001)26:1+<::AID-COL45>3.0.CO;2-A
  • Whitney, H.M., Kolle, M., Andrew, P., Chittka, L., Steiner, U., Blover, B.J., Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators (2009) Science, 323, pp. 130-133. , 10.1126/science.1166256 1:CAS:528:DC%2BD1MXovF2l 10.1126/science.1166256 19119235
  • Wyszecki, G., Stiles, W.S., The CIE colorimetric system (2000) Color Science: Concepts and Methods, Quantitative Data and Formulae, p. 145. , 2nd edn. Wiley, New York

Citas:

---------- APA ----------
Iriel, A. & Lagorio, M.G. (2010) . Is the flower fluorescence relevant in biocommunication?. Naturwissenschaften, 97(10), 915-924.
http://dx.doi.org/10.1007/s00114-010-0709-4
---------- CHICAGO ----------
Iriel, A., Lagorio, M.G. "Is the flower fluorescence relevant in biocommunication?" . Naturwissenschaften 97, no. 10 (2010) : 915-924.
http://dx.doi.org/10.1007/s00114-010-0709-4
---------- MLA ----------
Iriel, A., Lagorio, M.G. "Is the flower fluorescence relevant in biocommunication?" . Naturwissenschaften, vol. 97, no. 10, 2010, pp. 915-924.
http://dx.doi.org/10.1007/s00114-010-0709-4
---------- VANCOUVER ----------
Iriel, A., Lagorio, M.G. Is the flower fluorescence relevant in biocommunication?. Naturwissenschaften. 2010;97(10):915-924.
http://dx.doi.org/10.1007/s00114-010-0709-4