Artículo

Song, M.; Sandoval, T.A.; Chae, C.-S.; Chopra, S.; Tan, C.; Rutkowski, M.R.; Raundhal, M.; Chaurio, R.A.; Payne, K.K.; Konrad, C.; Bettigole, S.E.; Shin, H.R.; Crowley, M.J.P.; Cerliani, J.P.; Kossenkov, A.V.; Motorykin, I.; Zhang, S.; Manfredi, G. (...) Cubillos-Ruiz, J.R. "IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity" (2018) Nature. 562(7727):423-428
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function 1–4 . However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer—an aggressive malignancy that is refractory to standard treatments and current immunotherapies 5–8 —induces endoplasmic reticulum stress and activates the IRE1α–XBP1 arm of the unfolded protein response 9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α–XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α–XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α–XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts. © 2018, Springer Nature Limited.

Registro:

Documento: Artículo
Título:IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity
Autor:Song, M.; Sandoval, T.A.; Chae, C.-S.; Chopra, S.; Tan, C.; Rutkowski, M.R.; Raundhal, M.; Chaurio, R.A.; Payne, K.K.; Konrad, C.; Bettigole, S.E.; Shin, H.R.; Crowley, M.J.P.; Cerliani, J.P.; Kossenkov, A.V.; Motorykin, I.; Zhang, S.; Manfredi, G.; Zamarin, D.; Holcomb, K.; Rodriguez, P.C.; Rabinovich, G.A.; Conejo-Garcia, J.R.; Glimcher, L.H.; Cubillos-Ruiz, J.R.
Filiación:Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, United States
Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, United States
Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
Quentis Therapeutics, Inc, New York, NY, United States
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA, United States
Proteomics & Mass Spectrometry Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:gamma interferon; glutamine; messenger RNA; protein IRE1; protein IRE1alpha; unclassified drug; X box binding protein 1; amino acid transporter; ERN1 protein, human; gamma interferon; glucose; glutamine; IFNG protein, human; protein serine threonine kinase; ribonuclease; X box binding protein 1; XBP1 protein, human; animal cell; animal model; animal tissue; ascites fluid; ascites tumor; CD4+ T lymphocyte; controlled study; cytokine production; down regulation; endoplasmic reticulum stress; female; gene expression regulation; glucose transport; human; human cell; human tissue; IFNG gee; Letter; lymphocyte function; lymphocytic infiltration; mitochondrial respiration; mouse; nonhuman; ovary cancer; priority journal; protein glycosylation; signal transduction; transcriptomics; upregulation; animal; ascites; biosynthesis; cancer transplantation; cell respiration; cytology; deficiency; disease exacerbation; genetics; glycosylation; immunology; metabolism; metastasis; mitochondrion; ovary tumor; pathology; survival rate; T lymphocyte; tumor escape; unfolded protein response; Mus; Amino Acid Transport Systems, Basic; Animals; Ascites; Cell Respiration; Disease Progression; Endoplasmic Reticulum Stress; Endoribonucleases; Female; Gene Expression Regulation, Neoplastic; Glucose; Glutamine; Glycosylation; Humans; Interferon-gamma; Mice; Mitochondria; Neoplasm Metastasis; Neoplasm Transplantation; Ovarian Neoplasms; Protein-Serine-Threonine Kinases; Signal Transduction; Survival Rate; T-Lymphocytes; Tumor Escape; Unfolded Protein Response; X-Box Binding Protein 1
Año:2018
Volumen:562
Número:7727
Página de inicio:423
Página de fin:428
DOI: http://dx.doi.org/10.1038/s41586-018-0597-x
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
CODEN:NATUA
CAS:gamma interferon, 82115-62-6; glutamine, 56-85-9, 6899-04-3; glucose, 50-99-7, 84778-64-3; protein serine threonine kinase; ribonuclease, 59794-03-5, 9001-99-4; Amino Acid Transport Systems, Basic; Endoribonucleases; ERN1 protein, human; Glucose; Glutamine; IFNG protein, human; Interferon-gamma; Protein-Serine-Threonine Kinases; X-Box Binding Protein 1; XBP1 protein, human
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v562_n7727_p423_Song

Referencias:

  • Chang, C.H., Metabolic competition in the tumor microenvironment is a driver of cancer progression (2015) Cell, 162, pp. 1229-1241. , COI: 1:CAS:528:DC%2BC2MXhsVajs7%2FI
  • Ho, P.C., Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses (2015) Cell, 162, pp. 1217-1228. , COI: 1:CAS:528:DC%2BC2MXhsVajs7%2FJ
  • Scharping, N.E., The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction (2016) Immunity, 45, pp. 374-388. , COI: 1:CAS:528:DC%2BC28Xht1OntbfL
  • Anderson, K.G., Stromnes, I.M., Greenberg, P.D., Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies (2017) Cancer Cell, 31, pp. 311-325. , COI: 1:CAS:528:DC%2BC2sXksVeqsLw%3D
  • Chae, C.S., Teran-Cabanillas, E., Cubillos-Ruiz, J.R., Dendritic cell rehab: new strategies to unleash therapeutic immunity in ovarian cancer (2017) Cancer Immunol. Immunother., 66, pp. 969-977. , COI: 1:CAS:528:DC%2BC2sXjtVent74%3D
  • Matulonis, U.A., Ovarian cancer (2016) Nat. Rev. Dis. Primers, 2, p. 16061
  • Hamanishi, J., Safety and antitumor activity of anti-PD-1 antibody, nivolumab, in patients with platinum-resistant ovarian cancer (2015) J. Clin. Oncol., 33, pp. 4015-4022. , COI: 1:CAS:528:DC%2BC28Xht1SqtbvE
  • Kershaw, M.H., A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer (2006) Clin. Cancer Res., 12, pp. 6106-6115. , COI: 1:CAS:528:DC%2BD28XhtFWhsbnL
  • Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., Mori, K., XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor (2001) Cell, 107, pp. 881-891. , COI: 1:CAS:528:DC%2BD38XjtlKlsg%3D%3D
  • Lee, A.H., Iwakoshi, N.N., Glimcher, L.H., XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response (2003) Mol. Cell. Biol., 23, pp. 7448-7459. , COI: 1:CAS:528:DC%2BD3sXosFOgsLY%3D
  • Cubillos-Ruiz, J.R., Bettigole, S.E., Glimcher, L.H., Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer (2017) Cell, 168, pp. 692-706. , COI: 1:CAS:528:DC%2BC2sXis1ygtL4%3D
  • Cubillos-Ruiz, J.R., ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis (2015) Cell, 161, pp. 1527-1538. , COI: 1:CAS:528:DC%2BC2MXhtVeiu77J
  • Yan, D., Wang, H.W., Bowman, R.L., Joyce, J.A., STAT3 and STAT6 signaling pathways synergize to promote cathepsin secretion from macrophages via IRE1α activation (2016) Cell Reports, 16, pp. 2914-2927. , COI: 1:CAS:528:DC%2BC28XhsFWht7bO
  • Condamine, T., Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients (2016) Sci. Immunol., 1, p. aaf8943
  • Kipps, E., Tan, D.S., Kaye, S.B., Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research (2013) Nat. Rev. Cancer, 13, pp. 273-282. , COI: 1:CAS:528:DC%2BC3sXislyqur8%3D
  • Bamias, A., Significant differences of lymphocytes isolated from ascites of patients with ovarian cancer compared to blood and tumor lymphocytes. Association of CD3 + CD56 + cells with platinum resistance (2007) Gynecol. Oncol., 106, pp. 75-81. , COI: 1:CAS:528:DC%2BD2sXmsFCjsbs%3D
  • Curiel, T.J., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival (2004) Nat. Med., 10, pp. 942-949. , COI: 1:CAS:528:DC%2BD2cXntFSkt7g%3D
  • Lukesova, S., Comparative study of various subpopulations of cytotoxic cells in blood and ascites from patients with ovarian carcinoma (2015) Contemp. Oncol. (Pozn), 19, pp. 290-299. , COI: 1:CAS:528:DC%2BC1cXls1Knuro%3D
  • Knutson, K.L., Regulatory T cells, inherited variation, and clinical outcome in epithelial ovarian cancer (2015) Cancer Immunol. Immunother., 64, pp. 1495-1504. , COI: 1:CAS:528:DC%2BC2MXhsVWgsbrE
  • Kim, K.S., Hypoxia enhances lysophosphatidic acid responsiveness in ovarian cancer cells and lysophosphatidic acid induces ovarian tumor metastasis in vivo (2006) Cancer Res., 66, pp. 7983-7990. , COI: 1:CAS:528:DC%2BD28XotFWqt74%3D
  • Denzel, M.S., Antebi, A., Hexosamine pathway and (ER) protein quality control (2015) Curr. Opin. Cell Biol., 33, pp. 14-18. , COI: 1:CAS:528:DC%2BC2cXhsl2ksLjP
  • Yang, C., Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport (2014) Mol. Cell, 56, pp. 414-424. , COI: 1:CAS:528:DC%2BC2cXhvVOnt77P
  • Wellen, K.E., The hexosamine biosynthetic pathway couples growth factor-induced glutamine uptake to glucose metabolism (2010) Genes Dev., 24, pp. 2784-2799. , COI: 1:CAS:528:DC%2BC3MXltVKn
  • Wang, H., Endoplasmic reticulum stress up-regulates Nedd4-2 to induce autophagy (2016) FASEB J., 30, pp. 2549-2556
  • Jeon, Y.J., Regulation of glutamine carrier proteins by RNF5 determines breast cancer response to ER stress-inducing chemotherapies (2015) Cancer Cell, 27, pp. 354-369. , COI: 1:CAS:528:DC%2BC2MXktFOgt74%3D
  • Hatanaka, T., Hatanaka, Y., Setou, M., Regulation of amino acid transporter ATA2 by ubiquitin ligase Nedd4-2 (2006) J. Biol. Chem., 281, pp. 35922-35930. , COI: 1:CAS:528:DC%2BD28Xht1ajtrnL
  • Scarlett, U.K., Ovarian cancer progression is controlled by phenotypic changes in dendritic cells (2012) J. Exp. Med., 209, pp. 495-506. , COI: 1:CAS:528:DC%2BC38XktFOnsL0%3D
  • Conejo-Garcia, J.R., Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A (2004) Nat. Med., 10, pp. 950-958. , COI: 1:CAS:528:DC%2BD2cXntFSktL4%3D
  • So, J.S., Silencing of lipid metabolism genes through IRE1α-mediated mRNA decay lowers plasma lipids in mice (2012) Cell Metab., 16, pp. 487-499. , COI: 1:CAS:528:DC%2BC38XhsVCnsr%2FL
  • Roby, K.F., Development of a syngeneic mouse model for events related to ovarian cancer (2000) Carcinogenesis, 21, pp. 585-591. , COI: 1:CAS:528:DC%2BD3cXivFKktL8%3D
  • Lee, A.H., Scapa, E.F., Cohen, D.E., Glimcher, L.H., Regulation of hepatic lipogenesis by the transcription factor XBP1 (2008) Science, 320, pp. 1492-1496. , COI: 1:CAS:528:DC%2BD1cXntVWru7Y%3D
  • Iwawaki, T., Akai, R., Yamanaka, S., Kohno, K., Function of IRE1 alpha in the placenta is essential for placental development and embryonic viability (2009) Proc. Natl Acad. Sci. USA, 106, pp. 16657-16662. , COI: 1:CAS:528:DC%2BD1MXht1Ogs7%2FK
  • Lee, A.H., Iwakoshi, N.N., Anderson, K.C., Glimcher, L.H., Proteasome inhibitors disrupt the unfolded protein response in myeloma cells (2003) Proc. Natl Acad. Sci. USA, 100, pp. 9946-9951. , COI: 1:CAS:528:DC%2BD3sXmvVeju7o%3D
  • Yuan, M., Breitkopf, S.B., Yang, X., Asara, J.M., A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue (2012) Nat. Protocols, 7, pp. 872-881. , COI: 1:CAS:528:DC%2BC38XlsVSgsL8%3D
  • Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol., 10
  • Kent, W.J., The human genome browser at UCSC (2002) Genome Res., 12, pp. 996-1006. , COI: 1:CAS:528:DC%2BD38Xks12hs7s%3D
  • Li, B., Dewey, C.N., RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome (2011) BMC Bioinformatics, 12. , COI: 1:CAS:528:DC%2BC3MXhtFajtLvM
  • Robinson, M.D., Oshlack, A., A scaling normalization method for differential expression analysis of RNA-seq data (2010) Genome Biol., 11
  • Maglott, D., Ostell, J., Pruitt, K.D., Tatusova, T., Entrez Gene: gene-centered information at NCBI (2011) Nucleic Acids Res., 39, pp. D52-D57. , COI: 1:CAS:528:DC%2BC3sXivF2ltbc%3D

Citas:

---------- APA ----------
Song, M., Sandoval, T.A., Chae, C.-S., Chopra, S., Tan, C., Rutkowski, M.R., Raundhal, M.,..., Cubillos-Ruiz, J.R. (2018) . IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature, 562(7727), 423-428.
http://dx.doi.org/10.1038/s41586-018-0597-x
---------- CHICAGO ----------
Song, M., Sandoval, T.A., Chae, C.-S., Chopra, S., Tan, C., Rutkowski, M.R., et al. "IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity" . Nature 562, no. 7727 (2018) : 423-428.
http://dx.doi.org/10.1038/s41586-018-0597-x
---------- MLA ----------
Song, M., Sandoval, T.A., Chae, C.-S., Chopra, S., Tan, C., Rutkowski, M.R., et al. "IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity" . Nature, vol. 562, no. 7727, 2018, pp. 423-428.
http://dx.doi.org/10.1038/s41586-018-0597-x
---------- VANCOUVER ----------
Song, M., Sandoval, T.A., Chae, C.-S., Chopra, S., Tan, C., Rutkowski, M.R., et al. IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity. Nature. 2018;562(7727):423-428.
http://dx.doi.org/10.1038/s41586-018-0597-x