Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A Bell test is a randomized trial that compares experimental observations against the philosophical worldview of local realism 1, in which the properties of the physical world are independent of our observation of them and no signal travels faster than light. A Bell test requires spatially distributed entanglement, fast and high-efficiency detection and unpredictable measurement settings 2,3 . Although technology can satisfy the first two of these requirements 4-7, the use of physical devices to choose settings in a Bell test involves making assumptions about the physics that one aims to test. Bell himself noted this weakness in using physical setting choices and argued that human 'free will' could be used rigorously to ensure unpredictability in Bell tests 8 . Here we report a set of local-realism tests using human choices, which avoids assumptions about predictability in physics. We recruited about 100,000 human participants to play an online video game that incentivizes fast, sustained input of unpredictable selections and illustrates Bell-test methodology 9 . The participants generated 97,347,490 binary choices, which were directed via a scalable web platform to 12 laboratories on five continents, where 13 experiments tested local realism using photons 5,6, single atoms 7, atomic ensembles 10 and superconducting devices 11 . Over a 12-hour period on 30 November 2016, participants worldwide provided a sustained data flow of over 1,000 bits per second to the experiments, which used different human-generated data to choose each measurement setting. The observed correlations strongly contradict local realism and other realistic positions in bipartite and tripartite 12 scenarios. Project outcomes include closing the 'freedom-of-choice loophole' (the possibility that the setting choices are influenced by 'hidden variables' to correlate with the particle properties 13 ), the utilization of video-game methods 14 for rapid collection of human-generated randomness, and the use of networking techniques for global participation in experimental science. © 2018 Macmillan Publishers Ltd., part of Springer Nature.

Registro:

Documento: Artículo
Título:Challenging local realism with human choices
Autor:Abellán, C. et al.
Este artículo contiene 107 autores, consultelos en el artículo en formato pdf.
Filiación: Este artículo contiene 107 autores con sus filiaciones, consultelas en el artículo en formato pdf.
Palabras clave:equipment; experimental study; methodology; observational method; philosophy; physics; prediction; spatial distribution; Argentina; Article; Australia; Austria; Chile; China; controlled study; France; Germany; human; information processing; Italy; local realism; machine learning; measurement accuracy; measurement precision; prediction; priority journal; Spain; Switzerland; United States; decision making; freedom; geographic mapping; video game; Choice Behavior; Freedom; Geographic Mapping; Humans; Video Games
Año:2018
Volumen:557
Número:7704
Página de inicio:212
Página de fin:216
DOI: http://dx.doi.org/10.1038/s41586-018-0085-3
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
CODEN:NATUA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v557_n7704_p212_Abellan

Referencias:

  • Bell, J.S., On the Einstein-Podolsky-Rosen paradox (1964) Physics, 1, pp. 195-200
  • Larsson, J.-Å., Loopholes in Bell inequality tests of local realism (2014) J. Phys. A, 47, p. 424003
  • Kofler, J., Giustina, M., Larsson, J.-Å., Mitchell, M.W., Requirements for a loophole-free photonic Bell test using imperfect setting generators (2016) Phys. Rev. A, 93, p. 032115
  • Hensen, B., Loophole-free Bell inequality violation using electron spins separated by 1. 3 kilometres (2015) Nature, 526, pp. 682-686
  • Giustina, M., Significant-loophole-free test of Bell's theorem with entangled photons (2015) Phys. Rev. Lett., 115, p. 250401
  • Shalm, L.K., Strong loophole-free test of local realism (2015) Phys. Rev. Lett., 115, p. 250402
  • Rosenfeld, W., Event-ready Bell test using entangled atoms simultaneously closing detection and locality loopholes (2017) Phys. Rev. Lett., 119, p. 010402
  • Bell, J., (2004) Speakable and Unspeakable in Quantum Mechanics Ch. 7, , (Cambridge Univ. Press, Cambridge UK,)
  • BIG Bell Test, T., http://thebigbelltest.org; Farrera, P., Heinze, G., De Riedmatten, H., Entanglement between a photonic time-bin qubit and a collective atomic spin excitation (2018) Phys. Rev. Lett., 120, p. 100501
  • Wallraff, A., Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics (2004) Nature, 431, pp. 162-167
  • Carvacho, G., Experimental violation of local causality in a quantum network (2017) Nat. Commun., 8, p. 14775
  • Scheidl, T., Violation of local realism with freedom of choice (2010) Proc. Natl Acad. Sci. USA, 107, pp. 19708-19713
  • Sørensen, J., Exploring the quantum speed limit with computer games (2016) Nature, 532, pp. 210-213
  • Shimony, A., (2017) Bell's Theorem, the Stanford Encyclopedia of Philosophy, , https://plato.stanford.edu/entries/bell-theorem/, Zalta, E. N. (Metaphysics Research Lab, Stanford Univ., Stanford,)
  • Colbeck, R., (2007) Quantum and Relativistic Protocols for Secure Multi-Party Computation, , PhD thesis, Cambridge Univ
  • Hoefer, C., (2016) Causal Determinism, the Stanford Encyclopedia of Philosophy, , https://plato.stanford.edu/entries/determinism-causal/, (ed. Zalta, E. N.) (Metaphysics Research Lab, Stanford Univ., Stanford)
  • Acín, A., Masanes, L., Certified randomness in quantum physics (2016) Nature, 540, pp. 213-219
  • Aaronson, S., Quantum randomness (2014) Am. Sci., 102, pp. 266-271
  • Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., Mitchell, M.W., Generation of fresh and pure random numbers for loophole-free Bell tests (2015) Phys. Rev. Lett., 115, p. 250403
  • Fürst, M., High speed optical quantum random number generation (2010) Opt. Express, 18, p. 13029
  • Gallicchio, J., Friedman, A.S., Kaiser, D.I., Testing Bell's inequality with cosmic photons: Closing the setting-independence loophole (2014) Phys. Rev. Lett., 112, p. 110405
  • Handsteiner, J., Cosmic Bell test: Measurement settings from Milky Way stars (2017) Phys. Rev. Lett., 118, p. 060401
  • Wu, C., Random number generation with cosmic photons (2017) Phys. Rev. Lett., 118, p. 140402
  • Bera, M.N., Acín, A., Mitchell, M.W., Lewenstein, M., Randomness in quantum mechanics: Philosophy, physics and technology (2017) Rep. Prog. Phys., 80, p. 124001
  • Pironio, S., Random numbers certified by Bell's theorem (2010) Nature, 464, pp. 1021-1024
  • Bar-Hillel, M., Wagenaar, W.A., The perception of randomness (1991) Adv. Appl. Math., 12, pp. 428-454
  • Bierhorst, P., A robust mathematical model for a loophole-free Clauser-Horne experiment (2015) J. Phys. A, 48, p. 195302
  • Elkouss, D., Wehner, S., (Nearly) optimal P values for all Bell inequalities (2016) NPJ Quantum Inf., 2, p. 16026
  • Pütz, G., Rosset, D., Barnea, T.J., Liang, Y.-C., Gisin, N., Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality (2014) Phys. Rev. Lett., 113, p. 190402
  • Einstein, A., Podolsky, B., Rosen, N., Can quantum-mechanical description of physical reality be considered complete? Phys (1935) Rev., 47, pp. 777-780
  • Hall, M.J.W., Relaxed Bell inequalities and Kochen-Specker theorems (2011) Phys. Rev. A, 84, p. 022102
  • Barrett, J., Gisin, N., How much measurement independence is needed to demonstrate nonlocality? Phys (2011) Rev. Lett., 106, p. 100406
  • Bell, J.S., Clauser, J., Horne, M., Shimony, A., An exchange on local beables (1985) Dialectica, 39, pp. 85-110
  • Conway, J., Kochen, S., The free will theorem (2006) Found. Phys., 36, pp. 1441-1473
  • Bell, J., (2004) Speakable and Unspeakable in Quantum Mechanics Ch. 12, , (Cambridge Univ. Press, Cambridge UK,)
  • Erven, C.C., Experimental three-photon quantum nonlocality under strict locality conditions (2014) Nat. Photon., 8, pp. 292-296
  • Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A., Violation of Bell's inequality under strict Einstein locality conditions (1998) Phys. Rev. Lett., 81, pp. 5039-5043
  • Wagenaar, W.A., Generation of random sequences by human subjects: A critical survey of the literature (1972) Psychol. Bull., 77, pp. 65-72
  • Rapoport, A., Budescu, D.V., Generation of random series in two-person strictly competitive games (1992) J. Exp. Psychol. Gen., 121, pp. 352-363
  • Gibbons, R., (1992) Game Theory for Applied Economists, , (Princeton Univ. Press, Princeton,)
  • Mookherjee, D., Sopher, B., Learning behavior in an experimental matching pennies game (1994) Games Econ. Behav., 7, pp. 62-91
  • Serfozo, R., Basics of applied stochastic processes (Springer, Berlin, 2009)
  • Heck, R., (2017) Remote Optimization of An Ultra-cold Atoms Experiment by Experts and Citizen Scientists, , https://arxiv.org/abs/1709.02230

Citas:

---------- APA ----------
(2018) . Challenging local realism with human choices. Nature, 557(7704), 212-216.
http://dx.doi.org/10.1038/s41586-018-0085-3
---------- CHICAGO ----------
Abellán, C. "Challenging local realism with human choices" . Nature 557, no. 7704 (2018) : 212-216.
http://dx.doi.org/10.1038/s41586-018-0085-3
---------- MLA ----------
Abellán, C. "Challenging local realism with human choices" . Nature, vol. 557, no. 7704, 2018, pp. 212-216.
http://dx.doi.org/10.1038/s41586-018-0085-3
---------- VANCOUVER ----------
Abellán, C. Challenging local realism with human choices. Nature. 2018;557(7704):212-216.
http://dx.doi.org/10.1038/s41586-018-0085-3