Artículo

Harpole, W.S.; Sullivan, L.L.; Lind, E.M.; Firn, J.; Adler, P.B.; Borer, E.T.; Chase, J.; Fay, P.A.; Hautier, Y.; Hillebrand, H.; MacDougall, A.S.; Seabloom, E.W.; Williams, R.; Bakker, J.D.; Cadotte, M.W.; Chaneton, E.J.; Chu, C.; Cleland, E.E. (...) Wragg, P.D. "Addition of multiple limiting resources reduces grassland diversity" (2016) Nature. 537(7618):93-96
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors. © 2016 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:Addition of multiple limiting resources reduces grassland diversity
Autor:Harpole, W.S.; Sullivan, L.L.; Lind, E.M.; Firn, J.; Adler, P.B.; Borer, E.T.; Chase, J.; Fay, P.A.; Hautier, Y.; Hillebrand, H.; MacDougall, A.S.; Seabloom, E.W.; Williams, R.; Bakker, J.D.; Cadotte, M.W.; Chaneton, E.J.; Chu, C.; Cleland, E.E.; D'Antonio, C.; Davies, K.F.; Gruner, D.S.; Hagenah, N.; Kirkman, K.; Knops, J.M.H.; La Pierre, K.J.; McCulley, R.L.; Moore, J.L.; Morgan, J.W.; Prober, S.M.; Risch, A.C.; Schuetz, M.; Stevens, C.J.; Wragg, P.D.
Filiación:Department of Physiological Diversity, Helmholtz Center for Environmental Research, Permoserstrasse 15, Leipzig, 04318, Germany
German Centre for Integrative Biodiversity Research (IDiv), Deutscher Platz 5e, Leipzig, 04103, Germany
Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
Department of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN 55108, United States
School of Earth, Environment and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
Department of Wildland Resources and the Ecology Center, Utah State University, Temple, TX 76502, United States
Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, Utrecht, CH, 3584, Netherlands
Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Schleusenstrasse 1, Wilhelmshaven, D-26381, Germany
Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, United States
School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, United States
Department of Biological Sciences, University of Toronto-Scarborough, 1265 Military trail, Toronto, ON M1C1A4, Canada
IFEVA/CONICET, Departamento de Recursos Naturales y Ambiente, Universidad de Buenos Aires, Av. San Martín 4453, Buenos Aires, C1417DSE, Argentina
SYSU-Alberta Joint Lab for Biodiversity Conservation, State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, 510275, China
Ecology, Behavior and Evolution Section, University of California, San Diego, CA 92093, United States
Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9620, United States
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, United States
Department of Entomology, University of Maryland, College Park, MD 20742, United States
School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3209, South Africa
School of Biological Sciences, University of Nebraska, Lincoln, NB 68588, United States
Department of Integrative Biology, University of California, Berkeley, CA 94720, United States
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, United States
School of Biological Sciences, Monash University, Monash, VIC 3800, Australia
Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, VIC 3086, Australia
CSIRO Land and Water, Private Bag 5, Wembley, WA 6913, Australia
Swiss Federal Institute for Forest, Snow and Landscape Research, Community Ecology, Birmensdorf, 8903, Switzerland
Lancaster Environment Centre, Lancaster University, Lancaster, LA14YQ, United Kingdom
Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06511, United States
Palabras clave:biodiversity; biological production; biomass allocation; coexistence; competition (ecology); fertilization (reproduction); grassland; niche; nutrient limitation; plant community; species diversity; Article; biomass production; global change; grassland; nutrient concentration; nutrient limitation; plant community; priority journal; species coexistence; species diversity; turnover time; biodiversity; biomass; classification; drug effects; food; growth, development and aging; light; metabolism; plant; Poaceae; radiation response; fertilizer; Biodiversity; Biomass; Fertilizers; Food; Grassland; Light; Plants; Poaceae
Año:2016
Volumen:537
Número:7618
Página de inicio:93
Página de fin:96
DOI: http://dx.doi.org/10.1038/nature19324
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
CODEN:NATUA
CAS:Fertilizers
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v537_n7618_p93_Harpole

Referencias:

  • Hutchinson, G.E., Concluding remarks (1957) Quant. Biol., 22, pp. 415-427
  • Tilman, D., (1982) Resource Competition and Community Structure, , Princeton Univ. Press
  • Hautier, Y., Niklaus, P.A., Hector, A., Competition for light causes plant biodiversity loss after eutrophication (2009) Science, 324, pp. 636-638
  • Borer, E.T., Finding generality in ecology: A model for globally distributed experiments (2014) Methods Ecol. Evol., 5, pp. 65-73
  • Harpole, W.S., Tilman, D., Grassland species loss resulting from reduced niche dimension (2007) Nature, 446, pp. 791-793
  • Darwin, C.R., (1859) On the Origin of Species, , John Murray
  • Interlandi, S.J., Kilham, S.S., Limiting resources and the regulation of diversity in phytoplankton communities (2001) Ecology, 82, pp. 1270-1282
  • Hutchinson, G.E., (1961) The Paradox of the Plankton. Am. Nat., 95, pp. 137-147
  • Silvertown, J., Biss, P.M., Freeland, J., Community genetics: Resource addition has opposing effects on genetic and species diversity in a 150-year experiment (2009) Ecol. Lett., 12, pp. 165-170
  • Ren, Z., Effects of resource additions on species richness and ANPP in an alpine meadow community (2010) J. Plant Ecol., 3, pp. 25-31
  • Harpole, W.S., Nutrient co-limitation of primary producer communities (2011) Ecol.Lett., 14, pp. 852-862
  • Elser, J.J., Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems (2007) Ecol. Lett., 10, pp. 1135-1142
  • Fay, P.A., Grassland productivity limited by multiple nutrients (2015) Nature Plants, 1, p. 15080
  • Foster, B.L., Gross, K.L., Species richness in a successional grassland: Effects of nitrogen enrichment and plant litter (1998) Ecology, 79, pp. 2593-2602
  • Chapin, F.S., III the mineral nutrition of wild plants (1980) Annu. Rev. Ecol. Syst., 11, pp. 233-260
  • Cardinale, B.J., Hillebrand, H., Harpole, W.S., Gross, K., Ptacnik, R., Separating the influence of resource 'availability' from resource 'imbalance' on productivity-diversity relationships (2009) Ecol. Lett., 12, pp. 475-487
  • Tilman, D., Isbell, F., Cowles, J.M., Biodiversity and ecosystem functioning (2014) Annu. Rev. Ecol. Evol. Syst., 45, pp. 471-493
  • Seabloom, E.W., Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands (2015) Nature Commun., 6, p. 7710
  • Isbell, F., Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity (2013) Proc. Natl Acad. Sci. USA, 110, pp. 11911-11916
  • Von Felten, S., Belowground nitrogen partitioning in experimental grassland plant communities of varying species richness (2009) Ecology, 90, pp. 1389-1399
  • Litchman, E., Klausmeier, C.A., Trait-based community ecology of phytoplankton (2008) Annu. Rev. Ecol. Evol. Syst., 39, pp. 615-639
  • Chase, J.M., Knight, T.M., Scale-dependent effect sizes of ecological drivers on biodiversity: Why standardised sampling is not enough (2013) Ecol. Lett., 16, pp. 17-26
  • Flores-Moreno, H., Climate modifies response of non-native and native species richness to nutrient enrichment (2016) Phil. Trans. R. Soc. B, 371, p. 20150273
  • Borer, E.T., Herbivores and nutrients control grassland plant diversity via light limitation (2014) Nature, 508, pp. 517-520
  • Steffen, W., Planetary boundaries: Guiding human development on a changing planet (2015) Science, 347, p. 1259855
  • Tilman, D., Lehman, C., Human-caused environmental change: Impacts on plant diversity and evolution (2001) Proc. Natl Acad. Sci. USA, 98, pp. 5433-5440
  • Crawley, M.J., Harral, J.E., Scale dependence in plant biodiversity (2001) Science, 291, pp. 864-868
  • Oksanen, J., Is the humped relationship between species richness and biomass an artefact due to plot size? (1996) J. Ecol., 84, pp. 293-295
  • Pinheiro, J., Bates, D., (2006) Mixed-effects Models in S and S-PLUS, , Springer
  • Hedges, L.V., Gurevitch, J., Curtis, P.S., The meta-analysis of response ratios in experimental ecology (1999) Ecology, 80, pp. 1150-1156

Citas:

---------- APA ----------
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., Chase, J.,..., Wragg, P.D. (2016) . Addition of multiple limiting resources reduces grassland diversity. Nature, 537(7618), 93-96.
http://dx.doi.org/10.1038/nature19324
---------- CHICAGO ----------
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., et al. "Addition of multiple limiting resources reduces grassland diversity" . Nature 537, no. 7618 (2016) : 93-96.
http://dx.doi.org/10.1038/nature19324
---------- MLA ----------
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., et al. "Addition of multiple limiting resources reduces grassland diversity" . Nature, vol. 537, no. 7618, 2016, pp. 93-96.
http://dx.doi.org/10.1038/nature19324
---------- VANCOUVER ----------
Harpole, W.S., Sullivan, L.L., Lind, E.M., Firn, J., Adler, P.B., Borer, E.T., et al. Addition of multiple limiting resources reduces grassland diversity. Nature. 2016;537(7618):93-96.
http://dx.doi.org/10.1038/nature19324