Artículo

Bos, K.I.; Harkins, K.M.; Herbig, A.; Coscolla, M.; Weber, N.; Comas, I.; Forrest, S.A.; Bryant, J.M.; Harris, S.R.; Schuenemann, V.J.; Campbell, T.J.; Majander, K.; Wilbur, A.K.; Guichon, R.A.; Steadman, D.L.W.; Cook, D.C.; Niemann, S.; Behr, M.A. (...) Krause, J. "Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis" (2014) Nature. 514(7253):494-497
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Modern strains of Mycobacterium tuberculosis from the Americas are closely related to those fromEurope, supporting the assumption that human tuberculosis was introduced post-contact1. This notion, however, is incompatible with archaeological evidence of pre-contact tuberculosis in the New World2. Comparative genomics of modern isolates suggests that M. tuberculosis attained its worldwide distribution following human dispersals out of Africa during the Pleistocene epoch3, although this has yet to be confirmed with ancient calibration points. Here we present three 1,000-year-oldmycobacterial genomesfromPeruvianhuman skeletons, revealing that amember of the M. tuberculosis complex caused human disease before contact.The ancient strains are distinct fromknownhuman-adapted forms and are most closely related to those adapted to seals and sea lions. Two independent dating approaches suggest a most recent common ancestor for the M. tuberculosis complex less than 6,000 years ago, which supports a Holocene dispersal of the disease. Our results implicate sea mammals as having played a role in transmitting the disease to humans across the ocean. © 2014 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis
Autor:Bos, K.I.; Harkins, K.M.; Herbig, A.; Coscolla, M.; Weber, N.; Comas, I.; Forrest, S.A.; Bryant, J.M.; Harris, S.R.; Schuenemann, V.J.; Campbell, T.J.; Majander, K.; Wilbur, A.K.; Guichon, R.A.; Steadman, D.L.W.; Cook, D.C.; Niemann, S.; Behr, M.A.; Zumarraga, M.; Bastida, R.; Huson, D.; Nieselt, K.; Young, D.; Parkhill, J.; Buikstra, J.E.; Gagneux, S.; Stone, A.C.; Krause, J.
Filiación:Department of Archaeological Sciences, University of Tübingen, Ruemelinstraße 23, Tübingen, Germany
School of Human Evolution and Social Change, Arizona State University, PO Box 872402, Tempe, AZ, United States
Center for Bioinformatics, University of Tübingen, Sand 14, Tübingen, Germany
Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
University of Basel, Petersplatz 1, Basel, Switzerland
Genomics and Health Unit, FISABIO-Public Health, Avenida Cataluña 21, Valencia, Spain
CIBER (Centros de Investigación Biomédica en Red) in Epidemiology and Public Health, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, Planta 0, Madrid, Spain
Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
Department of Archaeology, University of Cape Town, Private Bag X1, Rondebosch, South Africa
CONICET, Laboratorio de Ecología Evolutiva Humana (FACSO, UNCPBA), Departamento de Biología (FCEyN, UNMDP), Calle 508 No. 881, Quequen, Argentina
Department of Anthropology, University of Tennessee, 250 South Stadium Hall, Knoxville, TN, United States
Department of Anthropology, Indiana University, 701 East Kirkwood Avenue, Bloomington, IN, United States
Molecular Mycobacteriology, Forschungszentrum Borstel, Parkallee 1, Borstel, Germany
German Center for Infection Research, Forschungszentrum Borstel, Parkallee 1, Borstel, Germany
McGill International TB Centre, McGill University, 1650 Cedar Avenue, Montreal, Canada
Biotechnology Institute, CICVyAINTA Castelar, Dr. Nicolás Repetto y De Los Reseros S/N, Hurlingham, Buenos Aires, Argentina
Instituto de Investigaciones Marinas y Costeras (CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, San Luis 1722, Mar del Plata, Argentina
Department of Medicine, Imperial College, London, United Kingdom
Division of Mycobacterial Research, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
Max Planck Institute for Science and History, Khalaische Straße 10, Jena, Germany
Palabras clave:adaptation; bacterium; common ancestry; disease spread; disease transmission; genome; geographical distribution; Holocene; pinniped; Pleistocene; skeleton; tuberculosis; Article; bacterial genome; bacterial transmission; bacterium identification; DNA damage; DNA library; Holocene; human; human tissue; mutation rate; Mycobacterium tuberculosis; nonhuman; Peruvian; phylogeny; population size; priority journal; single nucleotide polymorphism; tuberculosis; animal; bacterial genome; bone; ethnology; Europe; genetics; genomics; history; microbiology; migration; Mycobacterium tuberculosis; Peru; seal; transmission; tuberculosis; zoonosis; Pinnipedia; Europe; United States; Mammalia; Mycobacterium tuberculosis; Otariidae; Animals; Bone and Bones; Europe; Genome, Bacterial; Genomics; History, Ancient; Human Migration; Humans; Mycobacterium tuberculosis; Peru; Phylogeny; Pinnipedia; Tuberculosis; Zoonoses
Año:2014
Volumen:514
Número:7253
Página de inicio:494
Página de fin:497
DOI: http://dx.doi.org/10.1038/nature13591
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
CODEN:NATUA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v514_n7253_p494_Bos

Referencias:

  • Hershberg, R., High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography (2008) PLoS Biol., 6, p. e311
  • Roberts, C.A., Buikstra, J.E., The bioarchaeology of tuberculosis (2003) A Global View on a Reemerging Disease, pp. 187-213. , Univ. Press of Florida
  • Comas, I., Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans (2013) Nature Genet., 45, pp. 1176-1182
  • Wirth, T., Origin, spread, and demography of the Mycobacterium tuberculosis complex (2008) PLoS Pathogens, 4, p. e1000160
  • Cockburn, A., (1963) The Evolution and Eradication of Infectious Diseases, , Johns Hopkins Press
  • Brosch, R., A new evolutionary scenario for the Mycobacterium tuberculosis complex (2002) Proc. Natl Acad. Sci. USA, 99, pp. 3684-3689
  • Gagneux, S., Small, P.M., Global phylogeography of Mycobacterium tuberculosis and implications for tuberculosis product development (2007) Lancet Infect. Dis., 7, pp. 328-337
  • Gagneux, S., Variable host-pathogen compatibility in Mycobacterium tuberculosis (2006) Proc. Natl Acad. Sci. USA, 103, pp. 2869-2873
  • Comas, I., Human T-cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved (2010) Nature Genet., 42, pp. 498-503
  • Pepperell, C.S., The role of selection in shaping diversity of natural M. Tuberculosis populations (2013) PLoS Pathogens, 9, p. e1003543
  • Shapiro, B., Gilbert, M.P.T., No proof that typhoid fever caused the Plague of Athens (a reply to Papagrigorakis et al.) (2006) Int. J. Infect. Dis., 10, pp. 334-340
  • Bos, K.I., A draft genome of Yersinia pestis from victims of the Black Death (2011) Nature, 478, pp. 506-510
  • Bouwman, A., Genotype of a historic strain of Mycobacteriumtuberculosis (2012) Proc. Natl Acad. Sci. USA, 109, pp. 18511-18516
  • Chan, J.Z.-M., Metagenomic analysis of tuberculosis in a mummy (2013) N. Engl. J. Med., 369, pp. 289-290
  • Briggs, A.W., Patterns of damage in genomic DNA sequences from a Neandertal (2007) Proc. Natl Acad. Sci. USA, 104, pp. 14616-14621
  • Coscolla, M., Novel Mycobacterium tuberculosis complex from a wild chimpanzee (2013) Emerg. Infect. Dis., 19, pp. 969-976
  • Bastida, R., Tuberculosis in a wild subantarctic fur seal fromArgentina (1999) J. Wildl. Dis., 35, pp. 796-798
  • Comas, I., Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatorymutations in RNA polymerase genes (2012) Nature Genet., 18, pp. 106-110
  • Botella, H., Metallobiology of host-pathogen interactions: An intoxicating new insight (2012) Trends Microbiol., 20, pp. 106-112
  • Bryant, J.M., Inferring patient to patient transmission of Mycobacterium tuberculosis fromwhole genomesequencing data (2013) BMC Infect. Dis., 13, p. 110
  • Elias, S.A., Short, S.K., Nelson, C.H., Birks, H.H., Life and times of the Bering land bridge (1996) Nature, 382, pp. 60-63
  • Patrucco, R., Parasitological studies of coprolites of pre-Hispanic Peruvian populations (1983) Curr. Anthropol., 24, pp. 393-394
  • Bastida, R., La tuberculosis en grupos de cazadores recolectores de Patagonia y Tierra del Fuego: Nuevas alternativas de contagio a través de la fauna silvestre (2011) Rev. Arg. Antropol. Biol., 13, pp. 83-95
  • Salo, W., Identification of Mycobacterium tuberculosis DNA in a pre-Columbian Peruvian mummy (1994) Proc. Natl Acad. Sci. USA, 91, pp. 2091-2094
  • Arriaza, R.T., Pre-Columbian tuberculosis in northern Chile: Molecular and skeletal evidence (1995) Am. J. Phys. Anthropol., 98, pp. 37-45
  • Anawalt, P.R., Cultural contacts between Ecuador, west Mexico, and the American Southwest: Clothing similarities (1992) Lat. Am. Antiq., 3, pp. 114-129
  • Herring, D.A., Sattenspiel, L., Social contexts, syndemics, and infectious disease in northern Aboriginal populations (2007) Am. J. Hum. Biol., 19, pp. 190-202
  • Jurczynski, K., Pinniped tuberculosis in Malayan tapirs (Tapirus indicus) and its transmission to other terrestrial mammals (2011) J. Zoo Wildl. Med., 42, pp. 222-227
  • Berg, S., The burden of mycobacterial disease in Ethiopian cattle: Implications for public health (2009) PLoS ONE, 4, p. e5068
  • Cui, Y., Historical variations inmutation rate in an epidemic pathogen, Yersinia pestis (2012) Proc. Natl Acad. Sci. USA, 110, pp. 577-582

Citas:

---------- APA ----------
Bos, K.I., Harkins, K.M., Herbig, A., Coscolla, M., Weber, N., Comas, I., Forrest, S.A.,..., Krause, J. (2014) . Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 514(7253), 494-497.
http://dx.doi.org/10.1038/nature13591
---------- CHICAGO ----------
Bos, K.I., Harkins, K.M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al. "Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis" . Nature 514, no. 7253 (2014) : 494-497.
http://dx.doi.org/10.1038/nature13591
---------- MLA ----------
Bos, K.I., Harkins, K.M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al. "Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis" . Nature, vol. 514, no. 7253, 2014, pp. 494-497.
http://dx.doi.org/10.1038/nature13591
---------- VANCOUVER ----------
Bos, K.I., Harkins, K.M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature. 2014;514(7253):494-497.
http://dx.doi.org/10.1038/nature13591