Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Registro:

Documento: Artículo
Título:Elemental gesture dynamics are encoded by song premotor cortical neurons
Autor:Amador, A.; Perl, Y.S.; Mindlin, G.B.; Margoliash, D.
Filiación:Department of Organismal Biology and Anatomy, University of Chicago, 1027 East 57th Street, Chicago, IL, 60637, United States
Department of Physics, FCEN, University of Buenos Aires, ntendente Guiraldes 2160, Pabellon 1, Buenos Aires, 1428, Argentina
Department of Physics, FCEN, University of Buenos Aires, Intendente Guiraldes 2160, Pabellon 1, Buenos Aires, 1428, Argentina
Palabras clave:animal; animal structures; article; biological model; cytology; interneuron; male; motor cortex; nerve cell; physiology; singing; sleep; songbird; time; trachea; wakefulness; animal experiment; animal tissue; auditory feedback; auditory response; auditory stimulation; basal ganglion; bird; brain cell; electrostimulation; frequency modulation; gesture; motor activity; motor control; nonhuman; phonation; premotor cortex; pressure and tension; priority journal; respiratory system; singing; Taeniopygia guttata; Animal Structures; Animals; Interneurons; Male; Models, Neurological; Motor Cortex; Neurons; Singing; Sleep; Songbirds; Time; Trachea; Wakefulness; auditory cue; biomechanics; bird; neurology; numerical method; pressure effect; quantitative analysis; song; tension; Aves; Taeniopygia guttata
Año:2013
Volumen:495
Número:7439
Página de inicio:59
Página de fin:64
DOI: http://dx.doi.org/10.1038/nature11967
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v495_n7439_p59_Amador

Referencias:

  • Hatsopoulos, N.G., Xu, Q., Amit, Y., Encoding of movement fragmentsinthe motor cortex (2007) J. Neurosci., 27, pp. 5105-5114
  • Nishikawa, K., Neuromechanics: An integrative approach for understanding motor control (2007) Integr. Comp. Biol., 47, pp. 16-54
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from Zebra finch song (2011) Phys. Rev., 84, p. 51909
  • Dave, A.S., Margoliash, D., Song replay during sleep and computational rules for sensorimotor vocal learning (2000) Science, 290, pp. 812-816
  • Hahnloser, R.H.R., Kozhevnikov, A.A., Fee, M.S., An ultra-sparse code underlies the generation of neural sequences in a songbird (2002) Nature, 419, pp. 65-70
  • Prather, J.F., Peters, S., Nowicki, S., Mooney, R., Precise auditory-vocal mirroring in neurons for learned vocal communication (2008) Nature, 451, pp. 305-310
  • Yu, A.C., Margoliash, D., Temporal hierarchical control of singing in birds (1996) Science, 273, pp. 1871-1875
  • Margoliash, D., Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow (1983) J. Neurosci., 3, pp. 1039-1057
  • Margoliash, D., Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow (1986) J. Neurosci., 6, pp. 1643-1661
  • Shank, S.S., Margoliash, D., Sleep and sensorimotor integration during early vocal learning in a songbird (2009) Nature, 458, pp. 73-77
  • Amador, A., Goller, F., Mindlin, G.B., Frequency modulation during song in a suboscinedoes not require vocal muscles (2008) J. Neurophysiol., 99, pp. 2383-2389
  • Elemans, C.P.H., Laje, R., Mindlin, G.B., Goller, F., Smooth operator: Avoidance of subharmonic bifurcations through mechanical mechanisms simplifies song motor control in adult zebra finches (2010) J. Neurosci., 30, pp. 13246-13253
  • Fee, M.S., Shraiman, B., Pesaran, B., Mitra, P.P., The role of nonlinear dynamics of the syrinx in the vocalizations of a songbird (1998) Nature, 395, pp. 67-71
  • Mindlin, G.B., Laje, R., (2005) The Physics of Birdsong, , Springer Verlag
  • Laje, R., Gardner, T.J., Mindlin, G.B., Neuromuscular control of vocalizations in birdsong: A model (2002) Phys. Rev., E65, p. 5192
  • Sitt, J.D., Amador, A., Goller, F., Mindlin, G.B., Dynamical origin of spectrally rich vocalizations in birdsong (2008) Phys. Rev, E78, p. 11905
  • Amador, A., Mindlin, G.B., Beyond harmonic sounds in a simple model for birdsong production (2008) Chaos, 18, p. 43123
  • Riede, T., Suthers, R.A., Fletcher, N.H., Blevins, W.E., Songbirds tune their vocal tract to the fundamental frequency of their song (2006) Proc. Natl Acad. Sci. USA, 103, pp. 5543-5548
  • Hartley, R.S., Suthers, R.A., Air-flow and pressure during canary song: Direct evidence for mini-breaths (1989) J. Comp. Physiol. A, 165, pp. 15-26
  • Suthers, R.A., Goller, F., Wild, J.M., Somatosensory feedback modulates the respiratory motor program of crystallized birdsong (2002) Proc. Natl Acad. Sci. USA, 99, pp. 5680-5685
  • Wild, J.M., Functional neuroanatomy of the sensorimotor control of singing (2004) Ann. NY Acad. Sci., 1016, pp. 438-462
  • Suthers, R.A., Goller, F., Pytte, C., The neuromuscularcontrol of birdsong (1999) Phil. Trans. R. Soc. B, 354, pp. 927-939
  • Fee, M.S., Kozhevnikov, A.A., Hahnloser, R.H., Neural mechanisms of vocal sequence generation in the songbird (2004) Ann. NY Acad. Sci., 1016, pp. 153-170
  • Kozhevnikov, A.A., Fee, M.S., Singing-related activity of identified HVC neurons in the zebra finch (2007) J. Neurophysiol., 97, pp. 4271-4283
  • Fiete, I.R., Hahnloser, R.H.R., Fee, M.S., Seung, H.S., Temporal sparseness of the premotor drive is important for rapid learning in a neural network model of birdsong (2004) J. Neurophysiol., 92, pp. 2274-2282
  • Vu, E.T., Mazurek, M.E., Kuo, Y.C., Identification of a forebrain motor programming network for the learned song of zebra finches (1994) J. Neurosci., 14, pp. 6924-6934
  • Williams, H., Vicario, D.S., Participation of nucleus uvaeformis of the thalamus (1993) J. Neurobiol., 24, pp. 903-912. , Temporal patterning of song production
  • Margoliash, D., Fortune, E.S., Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc (1992) J. Neurosci., 12, pp. 4309-4326
  • Nick, T.A., Konishi, M., Neural auditory selectivity develops in parallel with song (2005) J. Neurobiol., 62, pp. 469-481
  • Prather, J.F., Nowicki, S., Erson, R.C., Peters, S., Mooney, R., Neural correlates of categorical perception in learned vocal communication (2009) Nature Neurosci, 12, pp. 221-228
  • Brainard, M.S., Doupe, A.J., Interruption of a basal ganglia-forebrain circuit prevents plasticity of learned vocalizations (2000) Nature, 404, pp. 762-766
  • Olveczky, B.P., Alman, A.S., Fee, M.S., Vocal experimentation in the juvenile songbird requires a basal ganglia circuit (2005) Plosbiol, 3, p. e153
  • Konishi, M., The role of auditory feedback in the control of vocalization in the white-crowned sparrow (1965) Z. Tierpsychol., 22, pp. 770-783
  • Ashmore, R.C., Wild, J.M., Schmidt, M.F., Brainstem and forebrain contributions to the generation of learned motor behaviors for song (2005) J. Neurosci., 25, pp. 8543-8554
  • Wolpert, D.M., Ghahramani, Z., Jordan, M.I., An internal model for sensorimotor integration (1995) Science, 269, pp. 1880-1882
  • Roberts, T.F., Klein, M.E., Kubke, M.F., Wild, J.M., Mooney, R., Telencephalic neurons monosynaptically link brainstem and forebrain premotor networks necessary for song (2008) J. Neurosci., 28, pp. 3479-3489
  • Coleman, M.J., Roy, A., Wild, J.M., Mooney, R., Thalamic gating of auditory responses in telencephalic song control nuclei (2007) J. Neurosci., 27, pp. 10024-10036
  • Bauer, E.E., A synaptic basis for auditory-vocal integration in the songbird (2008) J. Neurosci., 28, pp. 1509-1522
  • Mulliken, G.H., Musallam, S., Andersen, R.A., Forward estimation of movement state in posterior parietal cortex (2008) Proc. Natl Acad. Sci. USA, 105, pp. 8170-8177
  • Leyton, S.S., Sherrington, C.S., Observations on the excitable cortex of the chimpanzee, orangutan and gorilla (1917) Q.J. Exp. Physiol., 11, pp. 135-222
  • Sutter, M.L., Margoliash, D., Global synchronous response to autogenous song in zebra finch HVC (1994) J. Neurophysiol., 72, pp. 2105-2123
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., (2007) Numerical Recipes: The Art of Scientific Computing, , 3rd ednCambridge Univ. Press
  • Guckenheimer, J., Holmes, P., (1997) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, , Springer Verlag
  • Fletcher, N.H., Riede, T., Suthers, R.A., Model for vocalization by a bird with distensible vocal cavity and open beak (2006) J. Acoust. Soc. Am., 119, pp. 1005-1011
  • Daley, M., Goller, F., Tracheal length changes during zebra finch song and their possible role in upper vocal tract filtering (2004) J. Neurobiol., 59, pp. 319-330

Citas:

---------- APA ----------
Amador, A., Perl, Y.S., Mindlin, G.B. & Margoliash, D. (2013) . Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature, 495(7439), 59-64.
http://dx.doi.org/10.1038/nature11967
---------- CHICAGO ----------
Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D. "Elemental gesture dynamics are encoded by song premotor cortical neurons" . Nature 495, no. 7439 (2013) : 59-64.
http://dx.doi.org/10.1038/nature11967
---------- MLA ----------
Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D. "Elemental gesture dynamics are encoded by song premotor cortical neurons" . Nature, vol. 495, no. 7439, 2013, pp. 59-64.
http://dx.doi.org/10.1038/nature11967
---------- VANCOUVER ----------
Amador, A., Perl, Y.S., Mindlin, G.B., Margoliash, D. Elemental gesture dynamics are encoded by song premotor cortical neurons. Nature. 2013;495(7439):59-64.
http://dx.doi.org/10.1038/nature11967