Artículo

Sanchez, S.E.; Petrillo, E.; Beckwith, E.J.; Zhang, X.; Rugnone, M.L.; Hernando, C.E.; Cuevas, J.C.; Godoy Herz, M.A.; Depetris-Chauvin, A.; Simpson, C.G.; Brown, J.W.S.; Cerdán, P.D.; Borevitz, J.O.; Mas, P.; Ceriani, M.F.; Kornblihtt, A.R.; Yanovsky, M.J. "A methyl transferase links the circadian clock to the regulation of alternative splicing" (2010) Nature. 468(7320):112-116
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Circadian rhythms allow organisms to time biological processes to the most appropriate phases of the dayg-night cycle. Post-transcriptional regulation is emerging as an important component of circadian networks, but the molecular mechanisms linking the circadian clock to the control of RNA processing are largely unknown. Here we show that PROTEIN ARGININE METHYL TRANSFERASE 5 (PRMT5), which transfers methyl groups to arginine residues present in histones and Sm spliceosomal proteins, links the circadian clock to the control of alternative splicing in plants. Mutations in PRMT5 impair several circadian rhythms in Arabidopsis thaliana and this phenotype is caused, at least in part, by a strong alteration in alternative splicing of the core-clock gene PSEUDO RESPONSE REGULATOR 9 (PRR9). Furthermore, genome-wide studies show that PRMT5 contributes to the regulation of many pre-messenger-RNA splicing events, probably by modulating 5ĝ€2-splice-site recognition. PRMT5 expression shows daily and circadian oscillations, and this contributes to the mediation of the circadian regulation of expression and alternative splicing of a subset of genes. Circadian rhythms in locomotor activity are also disrupted in dart5-1, a mutant affected in the Drosophila melanogaster PRMT5 homologue, and this is associated with alterations in splicing of the core-clock gene period and several clock-associated genes. Our results demonstrate a key role for PRMT5 in the regulation of alternative splicing and indicate that the interplay between the circadian clock and the regulation of alternative splicing by PRMT5 constitutes a common mechanism that helps organisms to synchronize physiological processes with daily changes in environmental conditions. © 2010 Macmillan Publishers Limited. All rights reserved.

Registro:

Documento: Artículo
Título:A methyl transferase links the circadian clock to the regulation of alternative splicing
Autor:Sanchez, S.E.; Petrillo, E.; Beckwith, E.J.; Zhang, X.; Rugnone, M.L.; Hernando, C.E.; Cuevas, J.C.; Godoy Herz, M.A.; Depetris-Chauvin, A.; Simpson, C.G.; Brown, J.W.S.; Cerdán, P.D.; Borevitz, J.O.; Mas, P.; Ceriani, M.F.; Kornblihtt, A.R.; Yanovsky, M.J.
Filiación:IFEVA, Facultad de Agronomía, UBA-CONICET, C1417DSE Buenos Aires, Argentina
IFIBYNE, FCEyN, UBA-CONICET, C1428EGA Buenos Aires, Argentina
Fundación Instituto Leloir, IIBBA-CONICET, C1405BWEBuenos Aires, Argentina
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, United States
Centre for Research in Agricultural Genomics (CRAG), Consortium CSIC-IRTAUAB, Barcelona 08034, Spain
Genetics Programme, SCRI, Dundee DD2 5DA, United Kingdom
Division of Plant Sciences, University of Dundee at SCRI, Dundee, DD2 5DA, United Kingdom
Palabras clave:arginine derivative; histone; methyl group; methyltransferase; protein arginine methyltransferase; protein arginine methyltransferase 5; protein Sm; pseudo response regulator 9; regulator protein; RNA; unclassified drug; circadian rhythm; enzyme activity; fly; gene expression; genetic analysis; genome; physiological response; alternative RNA splicing; Arabidopsis; article; circadian rhythm; controlled study; Drosophila melanogaster; gene disruption; gene mutation; gene overexpression; locomotion; molecular clock; molecular recognition; nonhuman; oscillation; phenotype; priority journal; protein expression; Alternative Splicing; Animals; Arabidopsis; Arabidopsis Proteins; Base Sequence; Circadian Clocks; Circadian Rhythm; Darkness; Drosophila melanogaster; Drosophila Proteins; Gene Expression Profiling; Gene Expression Regulation, Plant; Light; Methylation; Mutation; Period Circadian Proteins; Phenotype; Protein Methyltransferases; Protein-Arginine N-Methyltransferases; RNA Precursors; RNA Splice Sites; RNA, Messenger; Spliceosomes; Transcription Factors; Arabidopsis thaliana; Drosophila melanogaster
Año:2010
Volumen:468
Número:7320
Página de inicio:112
Página de fin:116
DOI: http://dx.doi.org/10.1038/nature09470
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
CODEN:NATUA
CAS:RNA, 63231-63-0; histone, 9062-68-4; methyltransferase, 9033-25-4; Arabidopsis Proteins; Dart5 protein, Drosophila, 2.1.1.-; Drosophila Proteins; PER protein, Drosophila; PRMT5 protein, Arabidopsis, 2.1.1.23; PRR9 protein, Arabidopsis; Period Circadian Proteins; Protein Methyltransferases, 2.1.1.-; Protein-Arginine N-Methyltransferases, 2.1.1.-; RNA Precursors; RNA Splice Sites; RNA, Messenger; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v468_n7320_p112_Sanchez

Referencias:

  • Young, M.W., Kay, S.A., Time zones: A comparative genetics of circadian clocks (2001) Nature Rev. Genet., 2, pp. 702-715
  • Hazen, S., Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays (2009) Genome Biol., 10, pp. R17
  • Schoning, J.C., Streitner, C., Meyer, I.M., Gao, Y., Staiger, D., Reciprocal regulation of glycine-rich RNA-binding proteins via an interlocked feedback loop coupling alternative splicing to nonsense-mediated decay in Arabidopsis (2008) Nucleic Acids Res., 36, pp. 6977-6987
  • Guo, J., Cheng, P., Yuan, H., Liu, Y., The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop (2009) Cell, 138, pp. 1236-1246
  • Majercak, J., Chen, W., Edery, I., Splicing of the period gene 39-terminal intron is regulated by light, circadian clock factors, and phospholipase C (2004) Mol. Cell. Biol., 24, pp. 3359-3372
  • Collins, B.H., Rosato, E., Kyriacou, C.P., Seasonal behavior in Drosophila melanogaster requires the photoreceptors, the circadian clock, and phospholipase C (2004) Proc. Natl Acad. Sci. USA, 101, pp. 1945-1950
  • Bedford, M., Richard, S., Arginine methylation: An emerging regulator of protein function (2005) Mol. Cell, 18, pp. 263-272
  • Gonsalvez, G., Rajendra, T., Tian, L., Matera, A., The Sm-protein methyltransferase, Dart5, is essential for germ-cell specification and maintenance (2006) Curr. Biol., 16, pp. 1077-1089
  • Anne, J., Ollo, R., Ephrussi, A., Mechler, B., Arginine methyltransferase Capsuléen is essential for methylation of spliceosomal Sm proteins and germ cell formation in Drosophila (2007) Development, 134, pp. 137-146
  • Nozue, K., Rhythmic growth explained by coincidence between internal and external cues (2007) Nature, 448, pp. 358-361
  • Alabadi, D., Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock (2001) Science, 293, pp. 880-883
  • Pei, Y., Mutations in the type II protein arginine methyltransferase AtPRMT5 result in pleiotropic developmental defects in Arabidopsis (2007) Plant Physiol., 144, pp. 1913-1923
  • Schmitz, R., Sung, S., Amasino, R., Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana (2008) Proc. Natl Acad. Sci. USA, 105, pp. 411-416
  • Wang, X., SKB1-mediated symmetric dimethylation ofhistone H4R3 controls flowering time in Arabidopsis (2007) EMBO J., 26, pp. 1934-1941
  • Edwards, K.D., FLOWERING LOCUS C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock (2006) Plant Cell, 18, pp. 639-650
  • Farré, E.M., Harmer, S.L., Harmon, F.G., Yanovsky, M.J., Kay, S.A., Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock (2005) Curr. Biol., 15, pp. 47-54
  • Matsushika, A., Imamura, A., Yamashino, T., Mizuno, T., Aberrantexpressionofthe light-inducible and circadian-regulated APRR9 gene belonging to the circadian-associated APRR1/TOC1 quintet results in the phenotype of early flowering in Arabidopsis thaliana (2002) Plant Cell Physiol., 43, pp. 833-843
  • Chari, A., An assembly chaperone collaborates with the SMN complex to generate spliceosomal SnRNPs (2008) Cell, 135, pp. 497-509
  • Zhang, Z., SMN deficiency causes tissue-specific perturbations in the repertoire of sn RNAs and widespread defects in splicing (2008) Cell, 133, pp. 585-600
  • Gonsalvez, G.B., Praveen, K., Hicks, A.J., Tian, L., Matera, A.G., Sm protein methylation is dispensable for snRNP assembly in Drosophila melanogaster (2008) RNA, 14, pp. 878-887
  • Simpson, C.G., Monitoring changes in alternative precursor messenger RNA splicing in multiple gene transcripts (2008) Plant J., 53, pp. 1035-1048
  • Raczynska, K.D., Involvement of the nuclear cap-binding protein complex in alternative splicing inArabidopsis thaliana (2010) Nucleic Acids Res., 38, pp. 265-278
  • Zhang, N., Kallis, R.P., Ewy, R.G., Portis, A.R., Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform (2002) Proc. Natl Acad. Sci. USA, 99, pp. 3330-3334
  • Sarov-Blat, L., So, W., Liu, L., Rosbash, M., The Drosophila takeout gene is a novel molecular link between circadian rhythms and feeding behavior (2000) Cell, 101, pp. 647-656
  • Ceriani, M.F., Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior (2002) J. Neurosci., 22, pp. 9305-9319
  • Glaser, F.T., Stanewsky, R., Temperature synchronization of the Drosophila circadian clock (2005) Curr. Biol., 15, pp. 1352-1363
  • Zhang, D., Abovich, N., Rosbash, M., A biochemical function for the Sm complex (2001) Mol. Cell, 7, pp. 319-329
  • Schor, I.E., Rascovan, N., Pelisch, F., Alló, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc. Natl Acad. Sci. USA, 106, pp. 4325-4330
  • McDonald, M., Rosbash, M., Microarray analysis and organization of circadian gene expression in Drosophila (2001) Cell, 107, pp. 567-578
  • Rosbash, M., The implications of multiple circadian clock origins (2009) PLoS Biol., 7, pp. e62
  • Alonso, J.M., Genome-wide insertional mutagenesis of Arabidopsis thaliana (2003) Science, 301, pp. 653-657
  • Murashige, T., Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures (1962) Physiol. Plant., 15, pp. 473-497
  • Rezával, C., Werbajh, S., Ceriani, M.F., Neuronal death in Drosophila triggered by GAL4 accumulation (2007) Eur. J. Neurosci., 25, pp. 683-694
  • Hicks, K.A., Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant (1996) Science, 274, pp. 790-792
  • Plautz, J.D., Quantitative analysis of Drosophila period gene transcription in living animals (1997) J. Biol. Rhythms, 12, pp. 204-217
  • Millar, A.J., Carre, I.A., Strayer, C.A., Chua, N.H., Kay, S.A., Circadian clock mutants in Arabidopsis identified by luciferase imaging (1995) Science, 267, pp. 1161-1163
  • Strayer, C., Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog (2000) Science, 289, pp. 768-771
  • Michael, T.P., A morning-specific phytohormone gene expression program underlying rhythmic plant growth (2008) PLoS Biol., 6, pp. e225
  • Tusher, V.G., Tibshirani, R., Chu, G., Significance analysis of microarrays applied to the ionizing radiation response (2001) Proc. Natl Acad. Sci. USA, 98, pp. 5116-5121
  • Zhang, X., Byrnes, J., Gal, T., Li, W.-H., Borevitz, J., Whole genome transcriptome polymorphisms in Arabidopsis thaliana (2008) Genome Biol., 9, pp. R165
  • Sheth, N., Comprehensive splice-site analysis using comparative genomics (2006) Nucleic Acids Res., 34, pp. 3955-3967
  • Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., WebLogo: A sequence logo generator (2004) Genome Res., 14, pp. 1188-1190
  • Perales, M., Mas, P., A functional link between rhythmic changes in chromatin structure and the Arabidopsis biological clock (2007) Plant Cell, 19, pp. 2111-2123
  • Métivier, R., Estrogen receptor - A directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter (2003) Cell, 115, pp. 751-763
  • Bastow, R., Vernalization requires epigenetic silencing of FLC by histone methylation (2004) Nature, 427, pp. 164-167

Citas:

---------- APA ----------
Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., Cuevas, J.C.,..., Yanovsky, M.J. (2010) . A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature, 468(7320), 112-116.
http://dx.doi.org/10.1038/nature09470
---------- CHICAGO ----------
Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., et al. "A methyl transferase links the circadian clock to the regulation of alternative splicing" . Nature 468, no. 7320 (2010) : 112-116.
http://dx.doi.org/10.1038/nature09470
---------- MLA ----------
Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., et al. "A methyl transferase links the circadian clock to the regulation of alternative splicing" . Nature, vol. 468, no. 7320, 2010, pp. 112-116.
http://dx.doi.org/10.1038/nature09470
---------- VANCOUVER ----------
Sanchez, S.E., Petrillo, E., Beckwith, E.J., Zhang, X., Rugnone, M.L., Hernando, C.E., et al. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature. 2010;468(7320):112-116.
http://dx.doi.org/10.1038/nature09470