Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Beneath much of the Andes, oceanic lithosphere descends eastward into the mantle at an angle of about 30° (ref. 1). A partially molten region is thought to form in a wedge between this descending slab and the overlying continental lithosphere as volatiles given off by the slab lower the melting temperature of mantle material. This wedge is the ultimate source for magma erupted at the active volcanoes that characterize the Andean margin. But between 28° and 33° S the subducted Nazca plate appears to be anomalously buoyant, as it levels out at about 100 km depth and extends nearly horizontally under the continent. Above this 'flat slab', volcanic activity in the main Andean Cordillera terminated about 9 million years ago as the flattening slab presumably squeezed out the mantle wedge. But it is unknown where slab volatiles go once this happens, and why the flat slab finally rolls over to descend steeply into the mantle 600 km further eastward. Here we present results from a magnetotelluric profile in central Argentina, from which we infer enhanced electrical conductivity along the eastern side of the plunging slab, indicative of the presence of partial melt. This conductivity structure may imply that partial melting occurs to at least 250 km and perhaps to more than 400 km depth, or that melt is supplied from the 410 km discontinuity, consistent with the transition-zone 'water-filter' model of Bercovici and Karato.

Registro:

Documento: Artículo
Título:Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina
Autor:Booker, J.R.; Favetto, A.; Pomposiello, M.C.
Filiación:Dept. of Earth and Space Sciences, Box 351310, University of Washington, Seattle, WA 98195, United States
Inst. de Geocronol. y Geol. Isotop., Ciudad Universitaria, Pabellón INGEIS, 1428 Buenos Aires, Argentina
Palabras clave:Electric conductivity; Geology; Mathematical models; Melting; Water; Conductivity structure; Volatiles; Volcanoes; electrical resistivity; Nazca plate; oceanic lithosphere; plate tectonics; subduction zone; Argentina; article; electric conductivity; electric resistance; melting point; priority journal; sea; volcano; Argentina; South America
Año:2004
Volumen:429
Número:6990
Página de inicio:399
Página de fin:403
DOI: http://dx.doi.org/10.1038/nature02565
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
CODEN:NATUA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v429_n6990_p399_Booker

Referencias:

  • Cahill, T., Isacks, B., Seismicity and shape of the subducted Nazca Plate (1992) J. Geophys. Res., 97, pp. 17503-17529
  • Ulmer, P., Partial melting in the mantle wedge - The role of H2O in the genesis of mantle-derived "arc-related" magmas (2000) Phys. Earth Planet. Inter., 127, pp. 215-232
  • Cloos, M., Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts (1993) Geol. Soc. Am. Bull., 105, pp. 714-737
  • McGeary, S., Nur, A., Ben-Avraham, Z., Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus (1985) Tectonophysics, 119, pp. 195-221
  • Kay, S.M., Mpodozis, C., Magmatism as a probe of Neogene shallowing of the Nazca Plate beneath the modern Chilean flat-slab (2002) J. S. Am. Earth Sci., 15, pp. 39-57
  • Ramos, V.A., Cristallini, E.O., Pérez, D.J., The Pampean flat-slab of the central Andes (2002) J. S. Am. Earth Sci., 15, pp. 59-78
  • Bercovici, D., Karato, S., Whole mantle convection and the transition-zone water filter (2003) Nature, 425, pp. 39-44
  • Jordan, T., Allmendinger, R., Sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain foreland deformation (1986) Am. J. Sci., 286, pp. 737-764
  • Rogers, J.W., A history of continents in the past three billion years (1996) J. Geol., 104, pp. 91-107
  • Vozoff, K., (1991) Electromagnetic Methods in Applied Geophysics, 2, pp. 641-711. , (ed. Nabighian, M. N.) (Society of Exploration Geophysicists, Tulsa)
  • Jones, A.G., (1992) Continental Lower Crust, pp. 81-143. , (eds Fountain, D. M., Arculus, R. & Key, R. W.) (Elsevier, Amsterdam)
  • Jones, A.G., Imaging the continental upper mantle using electromagnetic methods (1999) Lithos, 48, pp. 57-80
  • Schilling, F.R., Partzsch, G.M., Brasse, H., Schwarz, G., Partial melting below the magmatic arc in the central Andes deduced from geoelectromagnetic field experiments and laboratory data (1997) Phys. Earth Planet. Inter., 103, pp. 17-31
  • Williams, Q., Hemley, R.J., Hydrogen in the deep Earth (2001) Annu. Rev. Earth Planet. Sci., 29, pp. 365-418
  • Xu, Y., Shankland, T.J., Poe, B.T., Laboratory-based electrical conductivity in the Earth's mantle (2000) J. Geophys. Res., 105, pp. 27865-27875
  • Peyronneau, J., Poirier, J.P., Electrical conductivity of the Earth's lower mantle (1989) Nature, 342, pp. 537-539
  • Carter, N.L., Tsenn, M.C., Flow properties of continental lithosphere (1987) Tectonophysics, 136, pp. 27-63
  • Chebli, G.A., Mozetic, M.E., Rosello, E.A., Bühler, M., (1999) Geología Argentina, pp. 627-644. , (ed. Caminos, R.) (Inst. de Geología y Recursos Minerales, Buenos Aires)
  • Chave, A.D., Smith, J.T., On electric and magnetic galvanic distortion tensor decompositions (1994) J. Geophys. Res., 99, pp. 4669-4682
  • Rodi, W., Mackie, R., Non-linear conjugate gradient algorithm for 2-D magnetotelluric inversion (2001) Geophysics, 66, pp. 174-178
  • Wannamaker, P.E., (1999) Three-Dimensional Electromagnetics, pp. 511-527. , (eds Oristaglio, M. & Spies, B.) (Society of Exploration Geophysicists, Tulsa)
  • Pearson, D.G., The characterization and origin of graphite in cratonic lithospheric mantle: A petrological carbon isotope and Raman spectroscopic study (1994) Contrib. Mineral. Petrol., 115, pp. 449-466
  • Roberts, J.J., Tyburczy, J.A., Partial-melt electrical conductivity: Influence of melt composition (1999) J. Geophys. Res., 104, pp. 7055-7065
  • Park, S., Ducea, M., Can in situ measurements of mantle electrical conductivity be used to infer properties of partial melts? (2003) J. Geophys. Res., 108, p. 2270
  • Norabuena, E.O., Dixon, T.H., Stein, S., Harrison, C.G.A., Decelerating Nazca-South America and Nazca-Pacific plate motions (1999) Geophys. Res. Lett., 26, pp. 3402-3404
  • Wiley, P.J., Magmas and volatile components (1979) Am. Mineral., 64, pp. 469-500
  • Bureau, H., Keppler, H., Complete miscibility between silicate melts and hydrous fluids in the upper mantle: Experimental evidence and geochemical implications (1999) Earth Planet. Sci. Lett., 165, pp. 187-196
  • James, D.E., Sacks, S., (1999) Geology of Ore Deposits of the Central Andes, pp. 1-25. , (ed. Skinner, B. J.) (Special Pub. 7, Society of Economic Geologists. Littleton, Colorado)

Citas:

---------- APA ----------
Booker, J.R., Favetto, A. & Pomposiello, M.C. (2004) . Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature, 429(6990), 399-403.
http://dx.doi.org/10.1038/nature02565
---------- CHICAGO ----------
Booker, J.R., Favetto, A., Pomposiello, M.C. "Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina" . Nature 429, no. 6990 (2004) : 399-403.
http://dx.doi.org/10.1038/nature02565
---------- MLA ----------
Booker, J.R., Favetto, A., Pomposiello, M.C. "Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina" . Nature, vol. 429, no. 6990, 2004, pp. 399-403.
http://dx.doi.org/10.1038/nature02565
---------- VANCOUVER ----------
Booker, J.R., Favetto, A., Pomposiello, M.C. Low electrical resistivity associated with plunging of the Nazca flat slab beneath Argentina. Nature. 2004;429(6990):399-403.
http://dx.doi.org/10.1038/nature02565