Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is important to be able to determine the state of a quantum system and to measure properties of its evolution. State determination can be achieved using tomography, in which the system is subjected to a series of experiments, whereas spectroscopy can be used to probe the energy spectrum associated with the system's evolution. Here we show that, for a quantum system whose state or evolution can be modelled on a quantum computer, tomography and spectroscopy can be interpreted as dual forms of quantum computation. Specifically, we find that the phase estimation algorithm (which underlies a quantum computer's ability to perform efficient simulations and to factorize large numbers) can be adapted for tomography or spectroscopy. This is analogous to the situation encountered in scattering experiments, in which it is possible to obtain information about both the state of the scatterer and its interactions. We provide an experimental demonstration of the tomographic application by performing a measurement of the Wigner function (a phase space distribution) of a quantum system. For this purpose, we use three qubits formed from spin-1/2 nuclei in a quantum computation involving liquid-state nuclear magnetic resonance.

Registro:

Documento: Artículo
Título:Interpretation of tomography and spectroscopy as dual forms of quantum computation
Autor:Miquel, C.; Paz, J.P.; Saraceno, M.; Knill, E.; Laflamme, R.; Negrevergne, C.
Filiación:Departamento de Física, FCEN, Pabellón 1, 1428 Buenos Aires, Argentina
Unidad de Actividad Física, CNEA Buenos Aires, Tandar, Argentina
Los Alamos National Laboratory, Ciudad Universitaria, MS B265, Los Alamos, NM 87545, United States
Department of Physics, University of Waterloo, Ciudad Universitaria, Waterloo, ON, N2L 3G1, Canada
Perimeter Institute for Theoretical Physics, 35 King Street N, Waterloo, ON, N2J 2W9, Canada
Palabras clave:Algorithms; Computer simulation; Nuclear magnetic resonance; Numerical methods; Spectroscopy; Spectrum analysis; Tomography; Quantum computation; Quantum theory; physics; spectroscopy; tomography; algorithm; article; computer system; evolution; integrated circuit; mathematical analysis; mathematical model; nuclear magnetic resonance; priority journal; probability; quantum mechanics; quantum theory; radiation scattering; spectroscopy; statistics; tomography
Año:2002
Volumen:418
Número:6893
Página de inicio:59
Página de fin:62
DOI: http://dx.doi.org/10.1038/nature00801
Título revista:Nature
Título revista abreviado:Nature
ISSN:00280836
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00280836_v418_n6893_p59_Miquel

Referencias:

  • Smithey, D.T., Beck, M., Reymer, M.G., Farydani, A., Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum (1993) Phys. Rev. Lett., 70, pp. 1244-1247
  • Nielsen, M., Chuang, I., (2000) Quantum Information and Computation, , Cambridge Univ. Press, Cambridge
  • Kitaev, A.Y., (1995) Quantum measurements and the Abelian stabilizer problem, , http://xxx.lanl.gov, Preprint quant-ph/9511026
  • Lloyd, S., Universal quantum simulators (1996) Science, 273, pp. 1073-1078
  • Shor, P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer (1997) SIAM J. Comput. Sci., 26, pp. 1484-1509
  • Cleve, R., Ekert, A., Macchiavello, C., Mosca, M., Quantum algorithms revisited (1998) Proc. R. Soc. Lond. A, 454, pp. 339-354
  • Barenco, A., Elementary gates for quantum computation (1995) Phys. Rev. A, 52, pp. 3457-3467
  • Feynman, R.P., Simulating physics with computers (1962) Int. J. Theor. Phys., 21, pp. 467-488
  • Abraham, D., Lloyd, S., Quantum algorithm providing exponential speed increase for finding eigenvalues and eigenvectors (1999) Phys. Rev. Lett., 83, pp. 5162-5165
  • Knill, E., Laflamme, R., Power of one bit of quantum information (1999) Phys. Rev. Lett., 81, pp. 5672-5675
  • Hillery, M., O'Connell, R.F., Scully, M.O., Wigner, E.P., Distribution functions in physics: Fundamentals (1984) Phys. Rep., 106, pp. 121-167
  • Paz, J.P., Zurek, W.H., (2001) Coherent Matter Waves, Les Houches Session LXXII, pp. 533-614. , (eds Kaiser, R., Westbrook, C. & David, F.) (EDP Sciences, Springer, Berlin)
  • Wootters, W.K., A Wigner function formulation for finite state quantum mechanics (1987) Ann. Phys. NY, 176, pp. 1-21
  • Leonhardt, U., Discrete Wigner function and quantum-state tomography (1996) Phys. Rev. A, 53, pp. 2998-3013
  • Miquel, C., Paz, J.P., Saraceno, M., Quantum computers in phase space (2002) Phys. Rev. A, , http://xxx.lanl.gov, (in the press); preprint quant-ph/0204149
  • Miquel, C., Paz, J.P., Perazzo, R., Factoring in a dissipative quantum computer (1996) Phys. Rev. A, 54, pp. 2605-2613
  • Zurek, W.H., Sub-Planck structure in phase space and its relevance for quantum decoherence (2001) Nature, 412, pp. 712-717
  • Cory, D.G., Experimental quantum error correction (1998) Phys. Rev. Lett., 81, pp. 2152-2155
  • Knill, E., Chuang, I., Laflamme, R., Effective pure states for bulk quantum computation (1998) Phys. Rev. A, 57, pp. 3348-3363
  • Lutterbach, L.G., Davidovich, L., Method for direct measurement of the Wigner function in cavity QED and ion traps (1997) Phys. Rev. Lett., 78, pp. 2547-2550
  • Lvovsky, L., Quantum state reconstruction of the single-photon Fock state (2001) Phys. Rev. Lett., 87, pp. 402-405
  • Nogues, G., Measurement of a negative value for the Wigner function of radiation (2000) Phys. Rev. A, 62, pp. 4101-4104

Citas:

---------- APA ----------
Miquel, C., Paz, J.P., Saraceno, M., Knill, E., Laflamme, R. & Negrevergne, C. (2002) . Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 418(6893), 59-62.
http://dx.doi.org/10.1038/nature00801
---------- CHICAGO ----------
Miquel, C., Paz, J.P., Saraceno, M., Knill, E., Laflamme, R., Negrevergne, C. "Interpretation of tomography and spectroscopy as dual forms of quantum computation" . Nature 418, no. 6893 (2002) : 59-62.
http://dx.doi.org/10.1038/nature00801
---------- MLA ----------
Miquel, C., Paz, J.P., Saraceno, M., Knill, E., Laflamme, R., Negrevergne, C. "Interpretation of tomography and spectroscopy as dual forms of quantum computation" . Nature, vol. 418, no. 6893, 2002, pp. 59-62.
http://dx.doi.org/10.1038/nature00801
---------- VANCOUVER ----------
Miquel, C., Paz, J.P., Saraceno, M., Knill, E., Laflamme, R., Negrevergne, C. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature. 2002;418(6893):59-62.
http://dx.doi.org/10.1038/nature00801