Artículo

Lujan, A.L.; Croci, D.O.; Gambarte Tudela, J.A.; Losinno, A.D.; Cagnoni, A.J.; Mariño, K.V.; Damiani, M.T.; Rabinovich, G.A. "Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection" (2018) Proceedings of the National Academy of Sciences of the United States of America. 115(26):E6000-E6009
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chlamydia trachomatis (Ct) constitutes the most prevalent sexually transmitted bacterium worldwide. Chlamydial infections can lead to severe clinical sequelae including pelvic inflammatory disease, ectopic pregnancy, and tubal infertility. As an obligate intracellular pathogen, Ct has evolved multiple strategies to promote adhesion and invasion of host cells, including those involving both bacterial and host glycans. Here, we show that galectin-1 (Gal1), an endogenous lectin widely expressed in female and male genital tracts, promotes Ct infection. Through glycosylation-dependent mechanisms involving recognition of bacterial glycoproteins and N-glycosylated host cell receptors, Gal1 enhanced Ct attachment to cervical epithelial cells. Exposure to Gal1, mainly in its dimeric form, facilitated bacterial entry and increased the number of infected cells by favoring Ct–Ct and Ct–host cell interactions. These effects were substantiated in vivo in mice lacking Gal1 or complex β1–6-branched N-glycans. Thus, disrupting Gal1–N-glycan interactions may limit the severity of chlamydial infection by inhibiting bacterial invasion of host cells. © 2018 National Academy of Sciences. All Rights Reserved.

Registro:

Documento: Artículo
Título:Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection
Autor:Lujan, A.L.; Croci, D.O.; Gambarte Tudela, J.A.; Losinno, A.D.; Cagnoni, A.J.; Mariño, K.V.; Damiani, M.T.; Rabinovich, G.A.
Filiación:Laboratorio de Fagocitosis, Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, C5500, Argentina
Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, C5500, Argentina
Laboratorio de Inmunopatología, Instituto de Histología y Embriología de Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, C5500, Argentina
Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1428ADN, Argentina
Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, C1428ADN, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:Chlamydia trachomatis; Galectin-1; Glycosylation; Host–pathogen interactions; Sexually transmitted diseases; bacterial protein; cell receptor; galectin 1; bacterial protein; galectin 1; LGALS1 protein, human; animal experiment; Article; cell interaction; chlamydiasis; controlled study; epithelium cell; female; female genital system; human; human cell; in vivo study; male genital system; mouse; nonhuman; priority journal; protein expression; protein glycosylation; protein protein interaction; animal; Chlamydia trachomatis; genetics; HeLa cell line; lymphogranuloma venereum; male; metabolism; pathology; Animals; Bacterial Proteins; Chlamydia trachomatis; Female; Galectin 1; HeLa Cells; Humans; Lymphogranuloma Venereum; Male; Mice
Año:2018
Volumen:115
Número:26
Página de inicio:E6000
Página de fin:E6009
DOI: http://dx.doi.org/10.1073/pnas.1802188115
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:galectin 1, 258495-34-0; Bacterial Proteins; Galectin 1; LGALS1 protein, human
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v115_n26_pE6000_Lujan

Referencias:

  • (2011) Prevalence and Incidence of Selected Sexually Transmitted Infections, Chlamydia Trachomatis, Neisseria Gonorrhoeae, Syphilis and Trichomonas Vaginalis: Methods and Results Used by WHO to Generate 2005 Estimate, pp. 1-38. , World Health Organization WHO, Geneva)
  • Elwell, C., Mirrashidi, K., Engel, J., Chlamydia cell biology and pathogenesis (2016) Nat Rev Microbiol, 14, pp. 385-400
  • Menon, S., Human and pathogen factors associated with Chlamydia trachomatis-related infertility in women (2015) Clin Microbiol Rev, 28, pp. 969-985
  • Zhu, H., Shen, Z., Luo, H., Zhang, W., Zhu, X., Chlamydia trachomatis infection-associated risk of cervical cancer: A meta-analysis (2016) Medicine (Baltimore), 95
  • Bastidas, R.J., Elwell, C.A., Engel, J.N., Valdivia, R.H., Chlamydial intracellular survival strategies (2013) Cold Spring Harb Perspect Med, 3, p. a010256
  • Damiani, M.T., Gambarte Tudela, J., Capmany, A., Targeting eukaryotic Rab proteins: A smart strategy for chlamydial survival and replication (2014) Cell Microbiol, 16, pp. 1329-1338
  • Cossé, M.M., Hayward, R.D., Subtil, A., One face of Chlamydia trachomatis: The infectious elementary body (2016) Curr Top Microbiol Immunol, , May 20
  • Swanson, A.F., Ezekowitz, R.A.B., Lee, A., Kuo, C.C., Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis (1998) Infect Immun, 66, pp. 1607-1612
  • Taraktchoglou, M., Pacey, A.A., Turnbull, J.E., Eley, A., Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate (2001) Infect Immun, 69, pp. 968-976
  • Menozzi, F.D., Enhanced bacterial virulence through exploitation of host glycosaminoglycans (2002) Mol Microbiol, 43, pp. 1379-1386
  • Tiwari, V., Maus, E., Sigar, I.M., Ramsey, K.H., Shukla, D., Role of heparan sulfate in sexually transmitted infections (2012) Glycobiology, 22, pp. 1402-1412
  • Fadel, S., Eley, A., Differential glycosaminoglycan binding of Chlamydia trachomatis OmcB protein from serovars E and LGV (2008) J Med Microbiol, 57, pp. 1058-1061
  • Beswick, E.J., Travelstead, A., Cooper, M.D., Comparative studies of glycosaminoglycan involvement in Chlamydia pneumoniae and C. Trachomatis invasion of host cells (2003) J Infect Dis, 187, pp. 1291-1300
  • Stallmann, S., Hegemann, J.H., The Chlamydia trachomatis Ctad1 invasin exploits the human integrin β1 receptor for host cell entry (2016) Cell Microbiol, 18, pp. 761-775
  • Subbarayal, P., EphrinA2 receptor (EphA2) is an invasion and intracellular signaling receptor for Chlamydia trachomatis (2015) PLoS Pathog, 11
  • Elwell, C.A., Ceesay, A., Kim, J.H., Kalman, D., Engel, J.N., RNA interference screen identifies Abl kinase and PDGFR signaling in Chlamydia trachomatis entry (2008) PLoS Pathog, 4
  • Kim, J.H., Jiang, S., Elwell, C.A., Engel, J.N., Chlamydia trachomatis co-opts the FGF2 signaling pathway to enhance infection (2011) PLoS Pathog, 7
  • Méndez-Huergo, S.P., Blidner, A.G., Rabinovich, G.A., Galectins: Emerging regulatory checkpoints linking tumor immunity and angiogenesis (2017) Curr Opin Immunol, 45, pp. 8-15
  • Cerliani, J.P., Blidner, A.G., Toscano, M.A., Croci, D.O., Rabinovich, G.A., Translating the ‘sugar code’ into immune and vascular signaling programs (2017) Trends Biochem Sci, 42, pp. 255-273
  • Sato, S., St-Pierre, C., Bhaumik, P., Nieminen, J., Galectins in innate immunity: Dual functions of host soluble β-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs) (2009) Immunol Rev, 230, pp. 172-187
  • Vasta, G.R., Roles of galectins in infection (2009) Nat Rev Microbiol, 7, pp. 424-438
  • Baum, L.G., Garner, O.B., Schaefer, K., Lee, B., Microbe-host interactions are positively and negatively regulated by galectin-glycan interactions (2014) Front Immunol, 5, p. 284
  • Chen, H.Y., Weng, I.C., Hong, M.H., Liu, F.T., Galectins as bacterial sensors in the host innate response (2014) Curr Opin Microbiol, 17, pp. 75-81
  • Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A., Randow, F., Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion (2012) Nature, 482, pp. 414-418
  • Poncini, C.V., Trypanosoma cruzi infection imparts a regulatory program in dendritic cells and T cells via galectin-1-dependent mechanisms (2015) J Immunol, 195, pp. 3311-3324
  • Okumura, C.Y.M., Baum, L.G., Johnson, P.J., Galectin-1 on cervical epithelial cells is a receptor for the sexually transmitted human parasite Trichomonas vaginalis (2008) Cell Microbiol, 10, pp. 2078-2090
  • Pineda, M.A., Corvo, L., Soto, M., Fresno, M., Bonay, P., Interactions of human galectins with Trypanosoma cruzi: Binding profile correlate with genetic clustering of lineages (2015) Glycobiology, 25, pp. 197-210
  • Benatar, A.F., Galectin-1 prevents infection and damage induced by Trypanosoma cruzi on cardiac cells (2015) PLoS Negl Trop Dis, 9
  • Gauthier, S., Induction of galectin-1 expression by HTLV-I Tax and its impact on HTLV-I infectivity (2008) Retrovirology, 5, p. 105
  • St-Pierre, C., Host-soluble galectin-1 promotes HIV-1 replication through a direct interaction with glycans of viral gp120 and host CD4 (2011) J Virol, 85, pp. 11742-11751
  • Yang, M.-L., Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis (2011) J Virol, 85, pp. 10010-10020
  • Toledo, K.A., Galectin-1 exerts inhibitory effects during DENV-1 infection (2014) PLoS One, 9
  • Garner, O.B., Timing of galectin-1 exposure differentially modulates Nipah virus entry and syncytium formation in endothelial cells (2015) J Virol, 89, pp. 2520-2529
  • Lee, P.H., Enterovirus 71 virion-associated galectin-1 facilitates viral replication and stability (2015) PLoS One, 10
  • Ouyang, J., Viral induction and targeted inhibition of galectin-1 in EBV+ posttransplant lymphoproliferative disorders (2011) Blood, 117, pp. 4315-4322
  • Nita-Lazar, M., Banerjee, A., Feng, C., Vasta, G.R., Galectins regulate the inflammatory response in airway epithelial cells exposed to microbial neuraminidase by modulating the expression of SOCS1 and RIG1 (2015) Mol Immunol, 68, pp. 194-202
  • Davicino, R.C., Galectin-1-driven tolerogenic programs aggravate Yersinia enterocolitica infection by repressing antibacterial immunity (2017) J Immunol, 199, pp. 1382-1392
  • Suryawanshi, A., Cao, Z., Thitiprasert, T., Zaidi, T.S., Panjwani, N., Galectin-1-mediated suppression of Pseudomonas aeruginosa-induced corneal immunopathology (2013) J Immunol, 190, pp. 6397-6409
  • Marcos, N.T., Helicobacter pylori induces beta3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl-Lewis x (2008) J Clin Invest, 118, pp. 2325-2336
  • Kuo, C., Takahashi, N., Swanson, A.F., Ozeki, Y., Hakomori, S., An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells (1996) J Clin Invest, 98, pp. 2813-2818
  • Fujitani, N., Total cellular glycomics allows characterizing cells and streamlining the discovery process for cellular biomarkers (2013) Proc Natl Acad Sci USA, 110, pp. 2105-2110
  • Horvat, T., Reversibility of membrane N-glycome of HeLa cells upon treatment with epigenetic inhibitors (2013) PLoS One, 8
  • Cho, M., Cummings, R.D., Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis (1996) Biochemistry, 35, pp. 13081-13088
  • Croci, D.O., Glycosylation-dependent lectin-receptor interactions preserve angiogenesis in anti-VEGF refractory tumors (2014) Cell, 156, pp. 744-758
  • Hatch, N.E., Hudson, M., Seto, M.L., Cunningham, M.L., Bothwell, M., Intracellular retention, degradation, and signaling of glycosylation-deficient FGFR2 and craniosy-nostosis syndrome-associated FGFR2C278F (2006) J Biol Chem, 281, pp. 27292-27305
  • Citores, L., Bai, L., Sørensen, V., Olsnes, S., Fibroblast growth factor receptor-induced phosphorylation of STAT1 at the Golgi apparatus without translocation to the nucleus (2007) J Cell Physiol, 212, pp. 148-156
  • Chen, P.-H., Chen, X., He, X., Platelet-derived growth factors and their receptors: Structural and functional perspectives (2013) Biochim Biophys Acta, 1834, pp. 2176-2186
  • Bellis, S.L., Variant glycosylation: An underappreciated regulatory mechanism for β1 integrins (2004) Biochim Biophys Acta, 1663, pp. 52-60
  • Stowell, S.R., Microbial glycan microarrays define key features of host-microbial interactions (2014) Nat Chem Biol, 10, pp. 470-476
  • Siridewa, K., Fröman, G., Hammar, L., Mårdh, P.-A.-A., Characterization of glycoproteins from Chlamydia trachomatis using lectins (1993) APMIS, 101, pp. 851-857
  • Kuo, C.C., Lee, A., Campbell, L.A., Cleavage of the N-linked oligosaccharide from the surfaces of Chlamydia species affects attachment and infectivity of the organisms in human epithelial and endothelial cells (2004) Infect Immun, 72, pp. 6699-6701
  • Van Breedam, W., Pöhlmann, S., Favoreel, H.W., de Groot, R.J., Nauwynck, H.J., Bittersweet symphony: Glycan-lectin interactions in virus biology (2014) FEMS Microbiol Rev, 38, pp. 598-632
  • Zúñiga, E., Gruppi, A., Hirabayashi, J., Kasai, K.I., Rabinovich, G.A., Regulated expression and effect of galectin-1 on Trypanosoma cruzi-infected macrophages: Modulation of microbicidal activity and survival (2001) Infect Immun, 69, pp. 6804-6812
  • Stowell, S.R., Innate immune lectins kill bacteria expressing blood group antigen (2010) Nat Med, 16, pp. 295-301
  • Cagnoni, A.J., Pérez Sáez, J.M., Rabinovich, G.A., Mariño, K.V., Turning-off signaling by siglecs, selectins, and galectins: Chemical inhibition of glycan-dependent interactions in cancer (2016) Front Oncol, 6, p. 109
  • Rabinovich, G., Castagna, L., Landa, C., Riera, C.M., Sotomayor, C., Regulated expression of a 16-kd galectin-like protein in activated rat macrophages (1996) J Leukoc Biol, 59, pp. 363-370
  • Barrionuevo, P., A novel function for galectin-1 at the crossroad of innate and adaptive immunity: Galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway (2007) J Immunol, 178, pp. 436-445
  • Agaisse, H., Derré, I., A C. Trachomatis cloning vector and the generation of C. Trachomatis strains expressing fluorescent proteins under the control of a C. Trachomatis promoter (2013) PLoS One, 8
  • Croci, D.O., Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi’s sarcoma (2012) J Exp Med, 209, pp. 1985-2000

Citas:

---------- APA ----------
Lujan, A.L., Croci, D.O., Gambarte Tudela, J.A., Losinno, A.D., Cagnoni, A.J., Mariño, K.V., Damiani, M.T.,..., Rabinovich, G.A. (2018) . Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection. Proceedings of the National Academy of Sciences of the United States of America, 115(26), E6000-E6009.
http://dx.doi.org/10.1073/pnas.1802188115
---------- CHICAGO ----------
Lujan, A.L., Croci, D.O., Gambarte Tudela, J.A., Losinno, A.D., Cagnoni, A.J., Mariño, K.V., et al. "Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection" . Proceedings of the National Academy of Sciences of the United States of America 115, no. 26 (2018) : E6000-E6009.
http://dx.doi.org/10.1073/pnas.1802188115
---------- MLA ----------
Lujan, A.L., Croci, D.O., Gambarte Tudela, J.A., Losinno, A.D., Cagnoni, A.J., Mariño, K.V., et al. "Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection" . Proceedings of the National Academy of Sciences of the United States of America, vol. 115, no. 26, 2018, pp. E6000-E6009.
http://dx.doi.org/10.1073/pnas.1802188115
---------- VANCOUVER ----------
Lujan, A.L., Croci, D.O., Gambarte Tudela, J.A., Losinno, A.D., Cagnoni, A.J., Mariño, K.V., et al. Glycosylation-dependent galectin–receptor interactions promote Chlamydia trachomatis infection. Proc. Natl. Acad. Sci. U. S. A. 2018;115(26):E6000-E6009.
http://dx.doi.org/10.1073/pnas.1802188115