Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The neurobiology of learning and memory has been mainly studied by focusing on pure aversive or appetitive experiences. Here, we challenged this approach considering that real-life stimuli come normally associated with competing aversive and appetitive consequences and that interaction between conflicting information must be intrinsic part of the memory processes. We used Neohelice crabs, taking advantage of two well-described appetitive and aversive learning paradigms and combining them in a single training session to evaluate how this affects memory. We found that crabs build separate appetitive and aversive memories that compete during retrieval but not during acquisition. Which memory prevails depends on the balance between the strength of the unconditioned stimuli and on the motivational state of the animals. The results indicate that after a mix experience with appetitive and aversive consequences, parallel memories are established in a way that appetitive and aversive information is stored to be retrieved in an opportunistic manner.

Registro:

Documento: Artículo
Título:Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice
Autor:Klappenbach, M.; Nally, A.; Locatelli, F.F.
Filiación:Departamento de Fisiología Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Instituto de Fisiología Biología Molecular y Neurociencias (IFIBYNE) CONICET, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Palabras clave:Appetitive; Aversive; Consolidation; Long-term memory; Retrieval; animal experiment; appetitive memory; Article; aversive memory; controlled study; crab; learning; male; memory; memory consolidation; motivation; neurobiology; nonhuman; priority journal; animal; animal behavior; appetitive behavior; avoidance behavior; biological model; Brachyura; conditioning; memory; nerve cell; physiology; psychological model; Animals; Appetitive Behavior; Avoidance Learning; Behavior, Animal; Brachyura; Conditioning (Psychology); Male; Memory; Models, Neurological; Models, Psychological; Neurons
Año:2017
Volumen:114
Número:23
Página de inicio:E4666
Página de fin:E4675
DOI: http://dx.doi.org/10.1073/pnas.1701927114
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v114_n23_pE4666_Klappenbach

Referencias:

  • Hammer, M., An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees (1993) Nature, 366, pp. 59-63
  • Vergoz, V., Roussel, E., Sandoz, J.-C., Giurfa, M., Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex (2007) PLoS One, 2, p. e288
  • Unoki, S., Matsumoto, Y., Mizunami, M., Participation of octopaminergic reward system and dopaminergic punishment system in insect olfactory learning revealed by pharmacological study (2005) Eur J Neurosci, 22, pp. 1409-1416
  • Awata, H., Roles of OA1 octopamine receptor and Dop1 dopamine receptor in mediating appetitive and aversive reinforcement revealed by RNAi studies (2016) Sci Rep, 6, p. 29696
  • Guven-Ozkan, T., Davis, R.L., Functional neuroanatomy of Drosophila olfactory memory formation (2014) Learn Mem, 21, pp. 519-526
  • Kaczer, L., Maldonado, H., Contrasting role of octopamine in appetitive and aversive learning in the crab Chasmagnathus (2009) PLoS One, 4, p. e6223
  • Klappenbach, M., Maldonado, H., Locatelli, F., Kaczer, L., Opposite actions of do-pamine on aversive and appetitive memories in the crab (2012) Learn Mem, 19, pp. 73-83
  • Agarwal, M., Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay (2011) PLoS One, 6, p. e25371
  • Klappenbach, M., Kaczer, L., Locatelli, F., Dopamine interferes with appetitive long-term memory formation in honey bees (2013) Neurobiol Learn Mem, 106, pp. 230-237
  • Cohn, R., Morantte, I., Ruta, V., Coordinated and compartmentalized neuro-modulation shapes sensory processing in Drosophila (2015) Cell, 163, pp. 1742-1755
  • Hige, T., Aso, Y., Modi, M.N., Rubin, G.M., Turner, G.C., Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila (2015) Neuron, 88, pp. 985-998
  • Lewis, L.P.C., A higher brain circuit for immediate integration of conflicting sensory information in Drosophila (2015) Curr Biol, 25, pp. 2203-2214
  • Owald, D., Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila (2015) Neuron, 86, pp. 417-427
  • Krashes, M.J., A neural circuit mechanism integrating motivational state with memory expression in Drosophila (2009) Cell, 139, pp. 416-427
  • Smith, B.H., Abramson, C.I., Tobin, T.R., Conditional withholding of proboscis extension in honeybees (Apis mellifera) during discriminative punishment (1991) J Comp Psychol, 105, pp. 345-356
  • Wright, G.A., Parallel reinforcement pathways for conditioned food aversions in the honeybee (2010) Curr Biol, 20, pp. 2234-2240
  • Das, G., Drosophila learn opposing components of a compound food stimulus (2014) Curr Biol, 24, pp. 1723-1730
  • Lozada, M., Romano, A., Maldonado, H., Long-term habituation to a danger stimulus in the crab Chasmagnathus granulatus (1990) Physiol Behav, 47, pp. 35-41
  • Kaczer, L., Klappenbach, M., Maldonado, H., Dissecting mechanisms of re-consolidation: Octopamine reveals differences between appetitive and aversive memories in the crab Chasmagnathus (2011) Eur J Neurosci, 34, pp. 1170-1178
  • Pedreira, M.E., Pérez-Cuesta, L.M., Maldonado, H., Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: Protein synthesis requirement and mediation by NMDA-type glutamatergic receptors (2002) J Neurosci, 22, pp. 8305-8311
  • Nader, K., Schafe, G.E., Le Doux, J.E., Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval (2000) Nature, 406, pp. 722-726
  • Sara, S.J., Retrieval and reconsolidation: Toward a neurobiology of remembering (2000) Learn Mem, 7, pp. 73-84
  • Pedreira, M.E., Pérez-Cuesta, L.M., Maldonado, H., Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction (2004) Learn Mem, 11, pp. 579-585
  • Barreiro, K.A., Suárez, L.D., Lynch, V.M., Molina, V.A., Delorenzi, A., Memory expression is independent of memory labilization/reconsolidation (2013) Neurobiol Learn Mem, 106, pp. 283-291
  • Caffaro, P.A., Suárez, L.D., Blake, M.G., Delorenzi, A., Dissociation between memory reactivation and its behavioral expression: Scopolamine interferes with memory expression without disrupting long-term storage (2012) Neurobiol Learn Mem, 98, pp. 235-245
  • Delorenzi, A., Memory beyond expression (2014) J Physiol Paris, 108, pp. 307-322
  • Maza, F.J., Locatelli, F.F., Delorenzi, A., Neural correlates of expression-independent memories in the crab Neohelice (2016) Neurobiol Learn Mem, 131, pp. 61-75
  • Frenkel, L., Maldonado, H., Delorenzi, A., Memory strengthening by a real-life episode during reconsolidation: An outcome of water deprivation via brain angio-tensin II (2005) Eur J Neurosci, 22, pp. 1757-1766
  • Krashes, M.J., Waddell, S., Rapid consolidation to a radish and protein synthesis-dependent long-term memory after single-session appetitive olfactory conditioning in Drosophila (2008) J Neurosci, 28, pp. 3103-3113
  • Tempel, B.L., Bonini, N., Dawson, D.R., Quinn, W.G., Reward learning in normal and mutant Drosophila (1983) Proc Natl Acad Sci USA, 80, pp. 1482-1486
  • Tully, T., Quinn, W.G., Classical conditioning and retention in normal and mutant Drosophila melanogaster (1985) J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 157, pp. 263-277
  • Wright, G.A., The role of dopamine and serotonin in conditioned food aversion learning in the honeybee (2011) Commun Integr Biol, 4, pp. 318-320
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: Individual neurons that support "what" but not "where" memories (2011) J Neurosci, 31, pp. 8175-8180
  • Aonuma, H., Relationship between the grades of a learned aversive-feeding response and the dopamine contents in Lymnaea (2016) Biol. Open, 5, pp. 1869-1873
  • Hige, T., Aso, Y., Rubin, G.M., Turner, G.C., Plasticity-driven individualization of olfactory coding in mushroom body output neurons (2015) Nature, 526, pp. 258-262
  • Schadegg, A.C., Herberholz, J.J., Satiation level affects anti-predatory decisions in foraging juvenile crayfish (2017) J Compar Physiol A, 203, pp. 223-232
  • Ito, E., Memory block: A consequence of conflict resolution (2015) J Exp Biol, 218, pp. 1699-1704
  • Maldonado, H., Romano, A., Tomsic, D., Long-term habituation (LTH) in the crab Chasmagnathus: A model for behavioral and mechanistic studies of memory (1997) Braz J Med Biol Res, 30, pp. 813-826
  • Rescorla, R.A., Behavioral studies of Pavlovian conditioning (1988) Annu Rev Neurosci, 11, pp. 329-352
  • Howell, D.C., (1987) Statistical Methods for Psychology, , (PWS-Kent, Boston)
  • Rosenthal, R., Rosnow, R., (1985) Contrast Analysis Focused Comparisons in the Analysis of Variance, , (Cambridge Univ Press, Cambridge, UK)
  • Hoeger, U., Florey, E., Catecholamine degradation in the hemolymph of the Chinese crab, Eriocheir Sinensis (1989) Comp Biochem Physiol Part C Comp Pharmacol, 92, pp. 323-327
  • Abbott, J., Absence of blood-brain barrier in a crustacean (1970) Carcinus Maenas L. Nature, 225, pp. 291-293
  • Sandeman, D.C., The vascular circulation in the brain, optic lobes and thoracic ganglia of the crab Carcinus (1967) Proc R Soc Lond B Biol Sci, 168, pp. 82-90
  • Delorenzi, A., High environmental salinity induces memory enhancement and increases levels of brain angiotensin-like peptides in the crab Chasmagnathus granulatus (2000) J Exp Biol, 203, pp. 3369-3379

Citas:

---------- APA ----------
Klappenbach, M., Nally, A. & Locatelli, F.F. (2017) . Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4666-E4675.
http://dx.doi.org/10.1073/pnas.1701927114
---------- CHICAGO ----------
Klappenbach, M., Nally, A., Locatelli, F.F. "Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice" . Proceedings of the National Academy of Sciences of the United States of America 114, no. 23 (2017) : E4666-E4675.
http://dx.doi.org/10.1073/pnas.1701927114
---------- MLA ----------
Klappenbach, M., Nally, A., Locatelli, F.F. "Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice" . Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 23, 2017, pp. E4666-E4675.
http://dx.doi.org/10.1073/pnas.1701927114
---------- VANCOUVER ----------
Klappenbach, M., Nally, A., Locatelli, F.F. Parallel memory traces are built after an experience containing aversive and appetitive components in the crab Neohelice. Proc. Natl. Acad. Sci. U. S. A. 2017;114(23):E4666-E4675.
http://dx.doi.org/10.1073/pnas.1701927114