Abstract:
Root hair polar growth is endogenously controlled by auxin and sustained by oscillating levels of reactive oxygen species (ROS). These cells extend several hundred-fold their original size toward signals important for plant survival. Although their final cell size is of fundamental importance, the molecular mechanisms that control it remain largely unknown. Here we show that ROS production is controlled by the transcription factor RSL4, which in turn is transcriptionally regulated by auxin through several auxin response factors (ARFs). In this manner, auxin controls ROS-mediated polar growth by activating RSL4, which then up-regulates the expression of genes encoding NADPH oxidases (also known as RESPIRATORY BURST OXIDASE HOMOLOG proteins) and class III peroxidases, which catalyze ROS production. Chemical or genetic interference with ROS balance or peroxidase activity affects root hair final cell size. Overall, our findings establish amolecular link between auxin and ROS-mediated polar root hair growth.
Registro:
Documento: |
Artículo
|
Título: | Molecular link between auxin and ROS-mediated polar growth |
Autor: | Mangano, S.; Denita-Juarez, S.P.; Choi, H.S.; Marzol, E.; Hwang, Y.; Ranocha, P.; Velasquez, S.M.; Borassi, C.; Barberini, M.L.; Aptekmann, A.A.; Muschietti, J.P.; Nadra, A.D.; Dunand, C.; Cho, H.-T.; Estevez, J.M. |
Filiación: | Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina IIBBA-CONICET, Buenos Aires, C1405BWE, Argentina Instituto de Fisiología, Biología Molecular y Neurociencias, IFIByNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Université Paul Sabatier, UMR 5546, CNRS, Castanet-Tolosan, F-31326, France Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres, INGEBI-CONICET, Buenos Aires, 1428, Argentina Departamento de Química Biológica, IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina Departamento de Biodiversidad y Biologóa Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
|
Palabras clave: | Auxin; Peroxidases; Root hair growth; ROS; RSL4; auxin; reactive oxygen metabolite; reduced nicotinamide adenine dinucleotide phosphate oxidase; transcription factor; transcription factor RSL4; unclassified drug; Arabidopsis protein; basic helix loop helix transcription factor; indoleacetic acid derivative; peroxidase; reactive oxygen metabolite; reduced nicotinamide adenine dinucleotide phosphate oxidase; RSL4 protein, Arabidopsis; superoxide-forming enzyme; transcription factor; Arabidopsis; Article; cell size; gene expression; hair growth; nonhuman; priority journal; root hair; upregulation; gene expression regulation; genetics; growth, development and aging; metabolism; plant root; Arabidopsis; Arabidopsis Proteins; Basic Helix-Loop-Helix Transcription Factors; Gene Expression Regulation, Plant; Indoleacetic Acids; NADPH Oxidases; Peroxidases; Plant Roots; Reactive Oxygen Species; Transcription Factors |
Año: | 2017
|
Volumen: | 114
|
Número: | 20
|
Página de inicio: | 5289
|
Página de fin: | 5294
|
DOI: |
http://dx.doi.org/10.1073/pnas.1701536114 |
Título revista: | Proceedings of the National Academy of Sciences of the United States of America
|
Título revista abreviado: | Proc. Natl. Acad. Sci. U. S. A.
|
ISSN: | 00278424
|
CODEN: | PNASA
|
CAS: | reduced nicotinamide adenine dinucleotide phosphate oxidase, 9032-22-8; peroxidase, 9003-99-0; Arabidopsis Proteins; Basic Helix-Loop-Helix Transcription Factors; Indoleacetic Acids; NADPH Oxidases; Peroxidases; Reactive Oxygen Species; RSL4 protein, Arabidopsis; superoxide-forming enzyme; Transcription Factors
|
Registro: | https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v114_n20_p5289_Mangano |
Referencias:
- Menand, B., An ancient mechanism controls the development of cells with a rooting function in land plants (2007) Science, 316, pp. 1477-1480
- Datta, S., Prescott, H., Dolan, L., Intensity of a pulse of rsl4 transcription factor synthesis determines arabidopsis root hair cell size (2015) Nat Plants, 1, p. 15138
- Slabaugh, E., Held, M., Brandizzi, F., Control of root hair development in arabidopsis thaliana by an endoplasmic reticulum anchored member of the r2r3-myb transcription factor family (2011) Plant J, 67, pp. 395-405
- Xu, P., Hdg11 upregulates cell-wall-loosening protein genes to promote root elongation in arabidopsis (2014) J Exp Bot, 65, pp. 4285-4295
- Yi, K., Menand, B., Bell, E., Dolan, L., A basic helix-loop-helix transcription factor controls cell growth and size in root hairs (2010) Nat Genet, 42, pp. 264-267
- Salazar-Henao, J.E., Schmidt, W., An inventory of nutrient-responsive genes in arabidopsis root hairs (2016) Front Plant Sci, 7, p. 237
- Song, L., The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation (2016) PLoS Genet, 12, p. e1006194
- Guilfoyle, T., Hagen, G., Ulmasov, T., Murfett, J., How does auxin turn on genes? (1998) Plant Physiol, 118, pp. 341-347
- Fukaki, H., Tameda, S., Masuda, H., Tasaka, M., Lateral root formation is blocked by a gain-of-function mutation in the solitary-root/iaa14 gene of arabidopsis (2002) Plant J, 29, pp. 153-168
- Bargmann, B.O.R., A map of cell type-specific auxin responses (2013) Mol Syst Biol, 9, p. 688
- Okushima, Y., Functional genomic analysis of the auxin response factor gene family members in arabidopsis thaliana: Unique and overlapping functions of arf7 and arf19 (2005) Plant Cell, 17, pp. 444-463
- Foreman, J., Reactive oxygen species produced by nadph oxidase regulate plant cell growth (2003) Nature, 422, pp. 442-446
- Wu, J., Spermidine oxidase-derived h2o2 regulates pollen plasma membrane hyperpolarization-Activated ca2+-permeable channels and pollen tube growth (2010) Plant J, 63, pp. 1042-1053
- Lee, Y., Rubio, M.C., Alassimone, J., Geldner, N., A mechanism for localized lignin deposition in the endodermis (2013) Cell, 153, pp. 402-412
- Xie, H.-T., Wan, Z.-Y., Li, S., Zhang, Y., Spatiotemporal production of reactive oxygen species by nadph oxidase is critical for tapetal programmed cell death and pollen development in arabidopsis (2014) Plant Cell, 26, pp. 2007-2023
- Orman-Ligeza, B., Rboh-mediated ros production facilitates lateral root emergence in arabidopsis (2016) Development, 143, pp. 3328-3339
- Monshausen, G.B., Bibikova, T.N., Messerli, M.A., Shi, C., Gilroy, S., Oscillations in extracellular ph and reactive oxygen species modulate tip growth of arabidopsis root hairs (2007) Proc Natl Acad Sci USA, 104, pp. 20996-21001
- Takeda, S., Local positive feedback regulation determines cell shape in root hair cells (2008) Science, 319, pp. 1241-1244
- Boisson-Dernier, A., Anxur receptor-like kinases coordinate cell wall integrity with growth at the pollen tube tip via nadph oxidases (2013) PLoS Biol, 11, p. e1001719
- Passardi, F., Penel, C., Dunand, C., Performing the paradoxical: How plant peroxidases modify the cell wall (2004) Trends Plant Sci, 9, pp. 534-540
- Brouwer, K.S., Van Valen, T., Day, D.A., Lambers, H., Hydroxamate-stimulated o(2) uptake in roots of pisum sativum and zea mays, mediated by a peroxidase: Its consequences for respiration measurements (1986) Plant Physiol, 82, pp. 236-240
- Schlereth, A., Monopteros controls embryonic root initiation by regulating a mobile transcription factor (2010) Nature, 464, pp. 913-916
- Galli, M., Auxin signaling modules regulate maize inflorescence architecture (2015) Proc Natl Acad Sci USA, 112, pp. 13372-13377
- Lee, M.-S., An, J.-H., Cho, H.-T., Biological and molecular functions of two ear motifs of arabidopsis iaa7 (2016) J Plant Biol, 59, pp. 24-32
- Tsukagoshi, H., Busch, W., Benfey, P.N., Transcriptional regulation of ros controls transition from proliferation to differentiation in the root (2010) Cell, 143, pp. 606-616
- Lu, D., Wang, T., Persson, S., Mueller-Roeber, B., Schippers, J.H.M., Transcriptional control of ros homeostasis by kuoda1 regulates cell expansion during leaf development (2014) Nat Commun, 5, p. 3767
- Vijayakumar, P., Datta, S., Dolan, L., Root hair defective six-like4 (rsl4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth (2016) New Phytol, 212, pp. 944-953
- Hwang, Y., Choi, H.S., Cho, H.M., Cho, H.T., Tracheophytes contain conserved orthologs of a basic helix-loop-helix transcription factor that modulate root hair specific genes (2017) Plant Cell, 29, pp. 39-53
- Sundaravelpandian, K., Chandrika, N.N., Schmidt, W., Pft1, a transcriptional mediator complex subunit, controls root hair differentiation through reactive oxygen species (ros) distribution in arabidopsis (2013) New Phytol, 197, pp. 151-161
- Yun, B.W., S-nitrosylation of nadph oxidase regulates cell death in plant immunity (2011) Nature, 478, pp. 264-268
- Nestler, J., Roothairless5, which functions in maize (zea mays l.) root hair initiation and elongation encodes a monocot-specific nadph oxidase (2014) Plant J, 79, pp. 729-740
- Kwon, T., Transcriptional response of arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development (2015) Am J Bot, 102, pp. 21-35
- Dunand, C., Crévecoeur, M., Penel, C., Distribution of superoxide and hydrogen peroxide in arabidopsis root and their influence on root development: Possible interaction with peroxidases (2007) New Phytol, 174, pp. 332-341
- Dynowski, M., Schaaf, G., Loque, D., Moran, O., Ludewig, U., Plant plasma membrane water channels conduct the signalling molecule h2o2 (2008) Biochem J, 414, pp. 53-61
- Miller, E.W., Dickinson, B.C., Chang, C.J., Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling (2010) Proc Natl Acad Sci USA, 107, pp. 15681-15686
- Tian, S., Plant aquaporin atpip1;4 links apoplastic H2O2 induction to disease immunity pathways (2016) Plant Physiol, 171, pp. 1635-1650
Citas:
---------- APA ----------
Mangano, S., Denita-Juarez, S.P., Choi, H.S., Marzol, E., Hwang, Y., Ranocha, P., Velasquez, S.M.,..., Estevez, J.M.
(2017)
. Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences of the United States of America, 114(20), 5289-5294.
http://dx.doi.org/10.1073/pnas.1701536114---------- CHICAGO ----------
Mangano, S., Denita-Juarez, S.P., Choi, H.S., Marzol, E., Hwang, Y., Ranocha, P., et al.
"Molecular link between auxin and ROS-mediated polar growth"
. Proceedings of the National Academy of Sciences of the United States of America 114, no. 20
(2017) : 5289-5294.
http://dx.doi.org/10.1073/pnas.1701536114---------- MLA ----------
Mangano, S., Denita-Juarez, S.P., Choi, H.S., Marzol, E., Hwang, Y., Ranocha, P., et al.
"Molecular link between auxin and ROS-mediated polar growth"
. Proceedings of the National Academy of Sciences of the United States of America, vol. 114, no. 20, 2017, pp. 5289-5294.
http://dx.doi.org/10.1073/pnas.1701536114---------- VANCOUVER ----------
Mangano, S., Denita-Juarez, S.P., Choi, H.S., Marzol, E., Hwang, Y., Ranocha, P., et al. Molecular link between auxin and ROS-mediated polar growth. Proc. Natl. Acad. Sci. U. S. A. 2017;114(20):5289-5294.
http://dx.doi.org/10.1073/pnas.1701536114