Artículo

Maza, F.J.; Sztarker, J.; Shkedy, A.; Peszano, V.N.; Locatelli, F.F.; Delorenzi, A. "Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers" (2016) Proceedings of the National Academy of Sciences of the United States of America. 113(49):E7957-E7965
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hypothesis of a common origin for the high-order memory centers in bilateral animals is based on the evidence that several key features, including gene expression and neuronal network patterns, are shared across several phyla. Central to this hypothesis is the assumption that the arthropods' higher order neuropils of the forebrain [the mushroom bodies (MBs) of insects and the hemiellipsoid bodies (HBs) of crustaceans] are homologous structures. However, even though involvement in memory processes has been repeatedly demonstrated for the MBs, direct proof of such a role in HBs is lacking. Here, through neuroanatomical and immunohistochemical analysis, we identified, in the crab Neohelice granulata, HBs that resemble the calyxless MBs found in several insects. Using in vivo calcium imaging, we revealed training-dependent changes in neuronal responses of vertical and medial lobes of the HBs. These changes were stimulus-specific, and, like in the hippocampus and MBs, the changes reflected the context attribute of the memory trace, which has been envisioned as an essential feature for the HBs. The present study constitutes functional evidence in favor of a role for the HBs in memory processes, and provides key physiological evidence supporting a common origin of the arthropods' high-order memory centers.

Registro:

Documento: Artículo
Título:Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers
Autor:Maza, F.J.; Sztarker, J.; Shkedy, A.; Peszano, V.N.; Locatelli, F.F.; Delorenzi, A.
Filiación:Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular y Celular, Instituto de Fisiología, Biología Molecular y Neurociencias-Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Palabras clave:Arthropoda; Evolution; Homology; In vivo Ca2+ imaging; Memory centers; allatostatin; calcium; synapsin; Article; controlled study; crab; escape behavior; hippocampus; histology; immunohistochemistry; immunoreactivity; long term memory; mechanical stimulation; memory; mushroom body; nerve cell; nerve cell plasticity; nervous system development; neuropil; nonhuman; priority journal; protein expression; short term memory; stimulus; synapse vesicle; visual stimulation; animal; Decapoda (Crustacea); male; memory; mushroom body; physiology; Animals; Decapoda (Crustacea); Male; Memory; Mushroom Bodies; Neuronal Plasticity
Año:2016
Volumen:113
Número:49
Página de inicio:E7957
Página de fin:E7965
DOI: http://dx.doi.org/10.1073/pnas.1612418113
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:allatostatin, 110119-33-0; calcium, 7440-70-2, 14092-94-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v113_n49_pE7957_Maza

Referencias:

  • Menzel, R., Phylogeny and evolution: On comparing species at multiple levels (2007) Science of Memory: Concepts, , eds Roediger HL, III, Dudai Y, Fitzpatrick SM Oxford Univ Press, New York
  • Dudai, Y., Morris, R.G., Memorable trends (2013) Neuron, 80 (3), pp. 742-750
  • Menzel, R., Memory dynamics in the honeybee (1999) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 185, pp. 323-340
  • Barco, A., Bailey, C.H., Kandel, E.R., Common molecular mechanisms in explicit and implicit memory (2006) J Neurochem, 97 (6), pp. 1520-1533
  • Glanzman, D.L., Common mechanisms of synaptic plasticity in vertebrates and invertebrates (2010) Curr Biol, 20 (1), pp. R31-R36
  • Wolff, G.H., Strausfeld, N.J., Genealogical correspondence of a forebrain centre implies an executive brain in the protostome-deuterostome bilaterian ancestor (2016) Philos Trans R Soc Lond B Biol Sci, 371 (1685), p. 20150055
  • Tomer, R., Denes, A.S., Tessmar-Raible, K., Arendt, D., Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium (2010) Cell, 142 (5), pp. 800-809
  • Menzel, R., The insect mushroom body, an experience-dependent recoding device (2014) J Physiol Paris, 108 (2-3), pp. 84-95
  • McKenzie, S., Hippocampal representation of related and opposing memories develop within distinct, hierarchically organized neural schemas (2014) Neuron, 83 (1), pp. 202-215
  • Gage, F.H., Mammalian neural stem cells (2000) Science, 287 (5457), pp. 1433-1438
  • Cayre, M., Neurogenesis in adult insect mushroom bodies (1996) J Comp Neurol, 371 (2), pp. 300-310
  • Wolff, G.H., Strausfeld, N.J., Genealogical correspondence of mushroom bodies across invertebrate phyla (2015) Curr Biol, 25 (1), pp. 38-44
  • Kenyon, F.C., The meaning and structure of the so-called "mushroom bodies" of the hexapod Brain (1896) Am Nat, 30 (356), pp. 643-650
  • Strausfeld, N.J., Hansen, L., Li, Y., Gomez, R.S., Ito, K., Evolution, discovery, and interpretations of arthropod mushroom bodies (1998) Learn Mem, 5 (1-2), pp. 11-37
  • Strausfeld, N.J., Sinakevitch, I., Brown, S.M., Farris, S.M., Ground plan of the insect mushroom body: Functional and evolutionary implications (2009) J Comp Neurol, 513 (3), pp. 265-291
  • Liu, L., Wolf, R., Ernst, R., Heisenberg, M., Context generalization in Drosophila visual learning requires the mushroom bodies (1999) Nature, 400 (6746), pp. 753-756
  • Mizunami, M., Yokohari, F., Takahata, M., Further exploration into the adaptive design of the arthropod "microbrain": I. Sensory and memory-processing systems (2004) Zoolog Sci, 21 (12), pp. 1141-1151
  • Hanström, B., The olfactory centers in Crustaceans (1925) J Comp Neurol, 38 (3), pp. 221-250
  • Wolff, G., Harzsch, S., Hansson, B.S., Brown, S., Strausfeld, N., Neuronal organization of the hemiellipsoid body of the land hermit crab, Coenobita clypeatus: Correspondence with the mushroom body ground pattern (2012) J Comp Neurol, 520 (13), pp. 2824-2846
  • Schmidt, M., The olfactory pathway of decapod crustaceans-an invertebrate model for life-long neurogenesis (2007) Chem Senses, 32 (4), pp. 365-384
  • Sullivan, J.M., Beltz, B.S., Adult neurogenesis in the central olfactory pathway in the absence of receptor neuron turnover in Libinia emarginata (2005) Eur J Neurosci, 22 (10), pp. 2397-2402
  • Papini, M.R., Pattern and process in the evolution of learning (2002) Psychol Rev, 109 (1), pp. 186-201
  • Campbell, C.B., Hodos, W., The concept of homology and the evolution of the nervous system (1970) Brain Behav Evol, 3 (5), pp. 353-367
  • Butler, A.B., Homology and homoplasy (2009) Encyclopedia of Neuroscience, 4, pp. 1195-1199. , ed Squire L Academic, Oxford
  • Sandeman, D.C., Henning, M., Harzsch, S., Adaptive trends in Malacostracan brain form and function related to behavior (2014) Nervous Systems and Control of Behavior, 3, pp. 11-45. , eds Derby CD, Thiel M Oxford Univ Press, Ney York
  • McKinzie, M.E., Benton, J.L., Beltz, B.S., Mellon, D., Parasol cells of the hemiellipsoid body in the crayfish Procambarus clarkii: Dendritic branching patterns and functional implications (2003) J Comp Neurol, 462 (2), pp. 168-179
  • Menzel, R., The honeybee as a model for understanding the basis of cognition (2012) Nat Rev Neurosci, 13 (11), pp. 758-768
  • Maldonado, H., Crustacean as model to investigate memory illustrated by extensive behavioral and physiological studies in Chasmagnathus (2002) The Crustacean Nervous System, pp. 314-327. , ed Wiese K Springer, Berlin
  • Tomsic, D., Romano, A., A multidisciplinary approach to learning and memory in the crab neohelice (Chasmagnathus) granulata (2013) Invertebrate Learning and Memory, Handbooks of Behavioral Neurosciences, pp. 337-355. , eds Menzel R, Benjamin PR Academic, Amsterdam
  • Sztarker, J., Tomsic, D., Brain modularity in arthropods: Individual neurons that support "what" but not "where" memories (2011) J Neurosci, 31 (22), pp. 8175-8180
  • Blaustein, D.N., Derby, C.D., Simmons, R.B., Beall, A.C., Structure of the brain and medulla terminalis of the spiny lobster Panulirus argus and the crayfish Procambarus clarkii, with an emphasis on olfactory centers (1988) J Crustac Biol, 8 (4), pp. 493-519
  • Sullivan, J.M., Beltz, B.S., Neural pathways connecting the deutocerebrum and lateral protocerebrum in the brains of decapod crustaceans (2001) J Comp Neurol, 441 (1), pp. 9-22
  • Frenkel, L., Neuroanatomical distribution of angiotensin-II-like neuropeptide within the central nervous system of the crab Chasmagnathus; physiological changes triggered by water deprivation (2010) Cell Tissue Res, 341 (1), pp. 181-195
  • Hepp, Y., Tano, M.C., Pedreira, M.E., Freudenthal, R.A., NMDA-like receptors in the nervous system of the crab Neohelice granulata: A neuroanatomical description (2013) J Comp Neurol, 521 (10), pp. 2279-2297
  • Farris, S.M., Evolution of insect mushroom bodies: Old clues, new insights (2005) Arthropod Struct Dev, 34 (3), pp. 211-234
  • Medan, V., Oliva, D., Tomsic, D., Characterization of lobula giant neurons responsive to visual stimuli that elicit escape behaviors in the crab Chasmagnathus (2007) J Neurophysiol, 98 (4), pp. 2414-2428
  • Krieger, J., Comparative brain architecture of the European shore crab Carcinus maenas (Brachyura) and the common hermit crab Pagurus bernhardus (Anomura) with notes on other marine hermit crabs (2012) Cell Tissue Res, 348 (1), pp. 47-69
  • Cayre, M., Scotto-Lomassese, S., Malaterre, J., Strambi, C., Strambi, A., Understanding the regulation and function of adult neurogenesis: Contribution from an insect model, the house cricket (2007) Chem Senses, 32 (4), pp. 385-395
  • Romano, A., Lessons from a crab: Molecular mechanisms in different memory phases of Chasmagnathus (2006) Biol Bull, 210 (3), pp. 280-288
  • Maldonado, H., Romano, A., Tomsic, D., Long-term habituation (LTH) in the crab Chasmagnathus: A model for behavioral and mechanistic studies of memory (1997) Braz J Med Biol Res, 30 (7), pp. 813-826
  • Pereyra, P., Portino, E.G., Maldonado, H., Long-lasting and context-specific freezing preference is acquired after spaced repeated presentations of a danger stimulus in the crab Chasmagnathus (2000) Neurobiol Learn Mem, 74 (2), pp. 119-134
  • Suárez, L.D., Smal, L., Delorenzi, A., Updating contextual information during consolidation as result of a new memory trace (2010) Neurobiol Learn Mem, 93 (4), pp. 561-571
  • Fustiñana, M.S., Tano, M.C., Romano, A., Pedreira, M.E., Contextual Pavlovian conditioning in the crab Chasmagnathus (2013) Anim Cogn, 16 (2), pp. 255-272
  • Tomsic, D., Berón De Astrada, M., Sztarker, J., Identification of individual neurons reflecting short- and long-term visual memory in an arthropodo (2003) J Neurosci, 23 (24), pp. 8539-8546
  • Maza, F.J., Locatelli, F.F., Delorenzi, A., Neural correlates of expression-independent memories in the crab Neohelice (2016) Neurobiol Learn Mem, 131, pp. 61-75
  • Polanska, M.A., Yasuda, A., Harzsch, S., Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish (2007) Cell Tissue Res, 330 (2), pp. 331-344
  • Mellon, D., Jr., Electrophysiological evidence for intrinsic pacemaker currents in crayfish parasol cells (2016) PLoS One, 11 (1), p. e0146091
  • Sztarker, J., Tomsic, D., Binocular visual integration in the crustacean nervous system (2004) J Comp Physiol a Neuroethol Sens Neural Behav Physiol, 190 (11), pp. 951-962
  • Farris, S.M., Van Dyke, J.W., Evolution and function of the insect mushroom bodies: Contributions from comparative and model systems studies (2015) Curr Opin Insect Sci, 12, pp. 19-25
  • Vogt, K., Direct neural pathways convey distinct visual information to Drosophila mushroom bodies (2016) ELife, 5, p. e14009
  • Vogt, K., Shared mushroom body circuits underlie visual and olfactory memories in Drosophila (2014) ELife, 3, p. e02395
  • Sullivan, J.M., Benton, J.L., Sandeman, D.C., Beltz, B.S., Adult neurogenesis: A common strategy across diverse species (2007) J Comp Neurol, 500 (3), pp. 574-584
  • Strausfeld, N.J., Hirth, F., Homology versus convergence in resolving transphyletic correspondences of brain organization (2013) Brain Behav Evol, 82 (4), pp. 215-219
  • Yagodin, S., Collin, C., Alkon, D.L., Sheppard, N.F., Jr., Sattelle, D.B., Mapping membrane potential transients in crayfish (Procambarus clarkii) optic lobe neuropils with voltage-sensitive dyes (1999) J Neurophysiol, 81 (1), pp. 334-344
  • Delorenzi, A., Memory beyond expression (2014) J Physiol Paris, 108 (4-6), pp. 307-322
  • Wang, Y., Mamiya, A., Chiang, A.S., Zhong, Y., Imaging of an early memory trace in the Drosophila mushroom body (2008) J Neurosci, 28 (17), pp. 4368-4376
  • Davis, R.L., Traces of Drosophila memory (2011) Neuron, 70 (1), pp. 8-19
  • Jiang, S.A., Campusano, J.M., Su, H., O'Dowd, D.K., Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels (2005) J Neurophysiol, 94 (1), pp. 491-500
  • Mizunami, M., Weibrecht, J.M., Strausfeld, N.J., Mushroom bodies of the cockroach: Their participation in place memory (1998) J Comp Neurol, 402 (4), pp. 520-537
  • Schindelin, J., Fiji: An open-source platform for biological-image analysis (2012) Nat Methods, 9 (7), pp. 676-682
  • Sztarker, J., Strausfeld, N.J., Tomsic, D., Organization of optic lobes that support motion detection in a semiterrestrial crab (2005) J Comp Neurol, 493 (3), pp. 396-411
  • Ott, S.R., Confocal microscopy in large insect brains: Zinc-formaldehyde fixation improves synapsin immunostaining and preservation of morphology in wholemounts (2008) J Neurosci Methods, 172 (2), pp. 220-230
  • Sztarker, J., Strausfeld, N., Andrew, D., Tomsic, D., Neural organization of first optic neuropils in the littoral crab Hemigrapsus oregonensis and the semiterrestrial species Chasmagnathus granulatus (2009) J Comp Neurol, 513 (2), pp. 129-150
  • Delorenzi, A., Visual learning and memory assessed by in vivo calcium imaging from individual interneurons in the crab Chasmagnathus (2004) 2004 Neuroscience Meeting Planner, , Society for Neuroscience, San Diego, Program No. 553.1
  • Schmidt, M., Harzsch, S., Comparative analysis of neurogenesis in the central olfactory pathway of adult decapod crustaceans by in vivo BrdU labeling (1999) Biol Bull, 196 (2), pp. 127-136
  • Pérez-Cuesta, L.M., Hepp, Y., Pedreira, M.E., Maldonado, H., Memory is not extinguished along with CS presentation but within a few seconds after CS-offset (2007) Learn Mem, 14 (1), pp. 101-108
  • Frenkel, L., Maldonado, H., Delorenzi, A., Memory strengthening by a real-life episode during reconsolidation: An outcome of water deprivation via brain angiotensin II (2005) Eur J Neurosci, 22 (7), pp. 1757-1766
  • Pedreira, M.E., Maldonado, H., Protein synthesis subserves reconsolidation or extinction depending on reminder duration (2003) Neuron, 38 (6), pp. 863-869
  • Berón De Astrada, M., Bengochea, M., Sztarker, J., Delorenzi, A., Tomsic, D., Behaviorally related neural plasticity in the arthropod optic lobes (2013) Curr Biol, 23 (15), pp. 1389-1398
  • Genovese, G., Dopaminergic regulation of ion transport in gills of the euryhaline semiterrestrial crab Chasmagnathus granulatus: Interaction between D1- and D2-like receptors (2006) J Exp Biol, 209, pp. 2785-2793
  • Galizia, C.G., Vetter, R.S., Optical methods for analyzing odor-evoked activity in the insect brain (2004) Frontiers in Neuroscience: Methods in Insect Sensory Neuroscience, pp. 349-392. , ed Christensen TA CRC Press, Boca Raton, FL
  • Pérez-Cuesta, L.M., Maldonado, H., Memory reconsolidation and extinction in the crab: Mutual exclusion or coexistence? (2009) Learn Mem, 16 (11), pp. 714-721
  • Pedreira, M.E., Romano, A., Tomsic, D., Lozada, M., Maldonado, H., Massed and spaced training build up different components of long-term habituation in the crab Chasmagnathus (1998) Anim Learn Behav, 26 (1), pp. 34-45
  • Hussaini, S.A., Menzel, R., Mushroom body extrinsic neurons in the honeybee brain encode cues and contexts differently (2013) J Neurosci, 33 (17), pp. 7154-7164

Citas:

---------- APA ----------
Maza, F.J., Sztarker, J., Shkedy, A., Peszano, V.N., Locatelli, F.F. & Delorenzi, A. (2016) . Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers. Proceedings of the National Academy of Sciences of the United States of America, 113(49), E7957-E7965.
http://dx.doi.org/10.1073/pnas.1612418113
---------- CHICAGO ----------
Maza, F.J., Sztarker, J., Shkedy, A., Peszano, V.N., Locatelli, F.F., Delorenzi, A. "Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers" . Proceedings of the National Academy of Sciences of the United States of America 113, no. 49 (2016) : E7957-E7965.
http://dx.doi.org/10.1073/pnas.1612418113
---------- MLA ----------
Maza, F.J., Sztarker, J., Shkedy, A., Peszano, V.N., Locatelli, F.F., Delorenzi, A. "Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers" . Proceedings of the National Academy of Sciences of the United States of America, vol. 113, no. 49, 2016, pp. E7957-E7965.
http://dx.doi.org/10.1073/pnas.1612418113
---------- VANCOUVER ----------
Maza, F.J., Sztarker, J., Shkedy, A., Peszano, V.N., Locatelli, F.F., Delorenzi, A. Context-dependent memory traces in the crab's mushroom bodies: Functional support for a common origin of high-order memory centers. Proc. Natl. Acad. Sci. U. S. A. 2016;113(49):E7957-E7965.
http://dx.doi.org/10.1073/pnas.1612418113