Artículo

Ventura, A.C.; Bush, A.; Vasen, G.; Goldín, M.A.; Burkinshaw, B.; Bhattacharjee, N.; Folch, A.; Brent, R.; Chernomoretz, A.; Colman-Lerner, A. "Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range" (2014) Proceedings of the National Academy of Sciences of the United States of America. 111(37):E3860-E3869
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cell signaling systems sense and respond to ligands that bind cell surface receptors. These systems often respond to changes in the concentration of extracellular ligand more rapidly than the ligand equilibrates with its receptor. We demonstrate, by modeling and experiment, a general "systems level" mechanism cells use to take advantage of the information present in the early signal, before receptor binding reaches a new steady state. This mechanism, preequilibrium sensing and signaling (PRESS), operates in signaling systems inwhich the kinetics of ligand-receptor binding are slower than the downstream signaling steps, and it typically involves transient activation of a downstream step. In the systems where it operates, PRESS expands and shifts the input dynamic range, allowing cells to make different responses to ligand concentrations so high as to be otherwise indistinguishable. Specifically, we show that PRESS applies to the yeast directional polarization in response to pheromone gradients. Consideration of preexisting kinetic data for ligand-receptor interactions suggests that PRESS operates in many cell signaling systems throughout biology. The same mechanism may also operate at other levels in signaling systems in which a slow activation step couples to a faster downstream step.

Registro:

Documento: Artículo
Título:Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range
Autor:Ventura, A.C.; Bush, A.; Vasen, G.; Goldín, M.A.; Burkinshaw, B.; Bhattacharjee, N.; Folch, A.; Brent, R.; Chernomoretz, A.; Colman-Lerner, A.
Filiación:Institute of Physiology, Molecular Biology, and Neuroscience (IFIBYNE), University of Buenos Aires (UBA), National Scientific and Technical Research Council (CONICET), Seattle, WA 98195, United States
Department of Physiology, Molecular, and Cell Biology, School of Exact and Natural Sciences (FCEN), Seattle, WA 98195, United States
Department of Bioengineering, University of Washington, Seattle, WA 98195, United States
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
Physics Institute of Buenos Aires (IFIBA), CONICET, United States
Department of Physics, FCEN, UBA, Buenos Aires, C1428EGA, Argentina
Fundación Instituto Leloir, Buenos Aires, C1405BWE, Argentina
Palabras clave:cell surface receptor; ligand; protein binding; biological model; cell polarity; cytology; extracellular space; kinetics; metabolism; Saccharomyces cerevisiae; signal transduction; time; Cell Polarity; Extracellular Space; Kinetics; Ligands; Models, Biological; Protein Binding; Receptors, Cell Surface; Saccharomyces cerevisiae; Signal Transduction; Time Factors
Año:2014
Volumen:111
Número:37
Página de inicio:E3860
Página de fin:E3869
DOI: http://dx.doi.org/10.1073/pnas.1322761111
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:Ligands; Receptors, Cell Surface
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v111_n37_pE3860_Ventura

Referencias:

  • Li, R., Bowerman, B., Symmetry breaking in biology (2010) Cold Spring Harb Perspect Biol, 2 (3), p. a003475
  • Macnab, R.M., Koshland, D.E., Jr., The gradient-sensing mechanism in bacterial chemotaxis (1972) Proc Natl Acad Sci USA, 69 (9), pp. 2509-2512
  • Swaney, K.F., Huang, C.H., Devreotes, P.N., Eukaryotic chemotaxis: A network of signaling pathways controls motility, directional sensing, and polarity (2010) Annu Rev Biophys, 39, pp. 265-289
  • Segall, J.E., Polarization of yeast cells in spatial gradients of alpha mating factor (1993) Proc Natl Acad Sci USA, 90 (18), pp. 8332-8336
  • Zigmond, S.H., Chemotactic response of neutrophils (1989) Am J Respir Cell Mol Biol, 1 (6), pp. 451-453
  • Arkowitz, R.A., Chemical gradients and chemotropism in yeast (2009) Cold Spring Harb Perspect Biol, 1 (2), p. a001958
  • Slaughter, B.D., Smith, S.E., Li, R., Symmetry breaking in the life cycle of the budding yeast (2009) Cold Spring Harb Perspect Biol, 1 (3), p. a003384
  • Jackson, C.L., Hartwell, L.H., Courtship in S. Cerevisiae: Both cell types choose mating partners by responding to the strongest pheromone signal (1990) Cell, 63 (5), pp. 1039-1051
  • Jenness, D.D., Burkholder, A.C., Hartwell, L.H., Binding of alpha-factor pheromone to yeast a cells: Chemical and genetic evidence for an alpha-factor receptor (1983) Cell, 35 (2), pp. 521-529
  • Ayscough, K.R., Drubin, D.G., A role for the yeast actin cytoskeleton in pheromone receptor clustering and signalling (1998) Curr Biol, 8 (16), pp. 927-930
  • Moore, T.I., Chou, C.S., Nie, Q., Jeon, N.L., Yi, T.M., Robust spatial sensing of mating pheromone gradients by yeast cells (2008) PLoS ONE, 3 (12), p. e3865
  • Colman-Lerner, A., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437 (7059), pp. 699-706
  • Yi, T.M., Kitano, H., Simon, M.I., A quantitative characterization of the yeast heterotrimeric G protein cycle (2003) Proc Natl Acad Sci USA, 100 (19), pp. 10764-10769
  • Yu, R.C., Negative feedback that improves information transmission in yeast signalling (2008) Nature, 456 (7223), pp. 755-761
  • Jenness, D.D., Burkholder, A.C., Hartwell, L.H., Binding of alpha-factor pheromone to Saccharomyces cerevisiae a cells: Dissociation constant and number of binding sites (1986) Mol Cell Biol, 6 (1), pp. 318-320
  • Bajaj, A., A fluorescent alpha-factor analogue exhibits multiple steps on binding to its G protein coupled receptor in yeast (2004) Biochemistry, 43 (42), pp. 13564-13578
  • Pruzansky, J.J., Patterson, R., Binding constants of IgE receptors on human blood basophils for IgE (1986) Immunology, 58 (2), pp. 257-262
  • Mellman, I.S., Unkeless, J.C., Purification of a functional mouse Fc receptor through the use of a monoclonal antibody (1980) J Exp Med, 152 (4), pp. 1048-1069
  • Herkenham, M., Cannabinoid receptor localization in brain (1990) Proc Natl Acad Sci USA, 87 (5), pp. 1932-1936
  • Wang, H.M., Smith, K.A., The interleukin 2 receptor. Functional consequences of its bimolecular structure (1987) J Exp Med, 166 (4), pp. 1055-1069
  • Hughes, R.J., Boyle, M.R., Brown, R.D., Taylor, P., Insel, P.A., Characterization of coexisting alpha 1- and beta 2-adrenergic receptors on a cloned muscle cell line, BC3H-1 (1982) Mol Pharmacol, 22 (2), pp. 258-266
  • Horwitz, E.M., Jenkins, W.T., Hoosein, N.M., Gurd, R.S., Kinetic identification of a twostate glucagon receptor system in isolated hepatocytes. Interconversion of homogeneous receptors (1985) J Biol Chem, 260 (16), pp. 9307-9315
  • Marasco, W.A., Feltner, D.E., Ward, P.A., Formyl peptide chemotaxis receptors on the rat neutrophil: Experimental evidence for negative cooperativity (1985) J Cell Biochem, 27 (4), pp. 359-375
  • Bajzer, Z., Myers, A.C., Vuk-Pavlovic, S., Binding, internalization, and intracellular processing of proteins interacting with recycling receptors. A kinetic analysis (1989) J Biol Chem, 264 (23), pp. 13623-13631
  • Ciechanover, A., Schwartz, A.L., Dautry-Varsat, A., Lodish, H.F., Kinetics of internalization and recycling of transferrin and the transferrin receptor in a human hepatoma cell line. Effect of lysosomotropic agents (1983) J Biol Chem, 258 (16), pp. 9681-9689
  • Waters, C.M., Oberg, K.C., Carpenter, G., Overholser, K.A., Rate constants for binding, dissociation, and internalization of EGF: Effect of receptor occupancy and ligand concentration (1990) Biochemistry, 29 (14), pp. 3563-3569
  • Lipkin, E.W., Teller, D.C., De Haën, C., Kinetics of insulin binding to rat white fat cells at 15 degrees C (1986) J Biol Chem, 261 (4), pp. 1702-1711
  • Zigmond, S.H., Sullivan, S.J., Lauffenburger, D.A., Kinetic analysis of chemotactic peptide receptor modulation (1982) J Cell Biol, 92 (1), pp. 34-43
  • Akiyama, S.K., Yamada, K.M., The interaction of plasma fibronectin with fibroblastic cells in suspension (1985) J Biol Chem, 260 (7), pp. 4492-4500
  • Matsui, K., Boniface, J.J., Steffner, P., Reay, P.A., Davis, M.M., Kinetics of T-cell receptor binding to peptide/I-Ek complexes: Correlation of the dissociation rate with T-cell responsiveness (1994) Proc Natl Acad Sci USA, 91 (26), pp. 12862-12866
  • Sklar, L.A., Sayre, J., McNeil, V.M., Finney, D.A., Competitive binding kinetics in ligandreceptor- competitor systems. Rate parameters for unlabeled ligands for the formyl peptide receptor (1985) Mol Pharmacol, 28 (4), pp. 323-330
  • Ueda, M., Sako, Y., Tanaka, T., Devreotes, P., Yanagida, T., Single-molecule analysis of chemotactic signaling in Dictyostelium cells (2001) Science, 294 (5543), pp. 864-867
  • Morton, T., Li, J., Cook, R., Chaiken, I., Mutagenesis in the C-terminal region of human interleukin 5 reveals a central patch for receptor alpha chain recognition (1995) Proc Natl Acad Sci USA, 92 (24), pp. 10879-10883
  • Clements, J.D., Lester, R.A., Tong, G., Jahr, C.E., Westbrook, G.L., The time course of glutamate in the synaptic cleft (1992) Science, 258 (5087), pp. 1498-1501
  • Hoffmann, C., A FlAsH-based FRET approach to determine G proteincoupled receptor activation in living cells (2005) Nat Methods, 2 (3), pp. 171-176
  • Krampfl, K., Control of kinetic properties of GluR2 flop AMPA-type channels: Impact of R/G nuclear editing (2002) Eur J Neurosci, 15 (1), pp. 51-62
  • Toshima, J.Y., Spatial dynamics of receptor-mediated endocytic trafficking in budding yeast revealed by using fluorescent alpha-factor derivatives (2006) Proc Natl Acad Sci USA, 103 (15), pp. 5793-5798
  • Konopka, J.B., Jenness, D.D., Hartwell, L.H., The C-terminus of the S. Cerevisiae alphapheromone receptor mediates an adaptive response to pheromone (1988) Cell, 54 (5), pp. 609-620
  • Koshland, D.E., Jr., Goldbeter, A., Stock, J.B., Amplification and adaptation in regulatory and sensory systems (1982) Science, 217 (4556), pp. 220-225
  • Basu, S., Mehreja, R., Thiberge, S., Chen, M.-T.T., Weiss, R., Spatiotemporal control of gene expression with pulse-generating networks (2004) Proc Natl Acad Sci USA, 101 (17), pp. 6355-6360
  • Jones, M.V., Westbrook, G.L., The impact of receptor desensitization on fast synaptic transmission (1996) Trends Neurosci, 19 (3), pp. 96-101
  • Tyson, J.J., Novák, B., Functional motifs in biochemical reaction networks (2010) Annu Rev Phys Chem, 61, pp. 219-240
  • Alon, U., (2006) An Introduction to Systems Biology: Design Principles of Biological Circuits, , (Chapman & Hall, London)
  • Dorer, R., Pryciak, P.M., Hartwell, L.H., Saccharomyces cerevisiae cells execute a default pathway to select a mate in the absence of pheromone gradients (1995) J Cell Biol, 131 (4), pp. 845-861
  • Whiteway, M.S., Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p (1995) Science, 269 (5230), pp. 1572-1575
  • Pryciak, P.M., Huntress, F.A., Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gbetagamma complex underlies activation of the yeast pheromone response pathway (1998) Genes Dev, 12 (17), pp. 2684-2697
  • Keenan, T.M., Hsu, C.-H., Folch, A., Microfluidic "jets" for generating steadystate gradients of soluble molecules on open surfaces (2006) Appl Phys Lett, 89 (11), pp. 1141031-1141033
  • Shaner, N.C., A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum (2013) Nat Methods, 10 (5), pp. 407-409
  • Butty, A.C., A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization (2002) EMBO J, 21 (7), pp. 1565-1576
  • Irazoqui, J.E., Gladfelter, A.S., Lew, D.J., Scaffold-mediated symmetry breaking by Cdc42p (2003) Nat Cell Biol, 5 (12), pp. 1062-1070
  • Chenevert, J., Corrado, K., Bender, A., Pringle, J., Herskowitz, I., A yeast gene (BEM1) necessary for cell polarization whose product contains two SH3 domains (1992) Nature, 356 (6364), pp. 77-79
  • Casamayor, A., Snyder, M., Bud-site selection and cell polarity in budding yeast (2002) Curr Opin Microbiol, 5 (2), pp. 179-186
  • Zahner, J.E., Harkins, H.A., Pringle, J.R., Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae (1996) Mol Cell Biol, 16 (4), pp. 1857-1870
  • Altschuler, S.J., Angenent, S.B., Wang, Y., Wu, L.F., On the spontaneous emergence of cell polarity (2008) Nature, 454 (7206), pp. 886-889
  • Nern, A., Arkowitz, R.A., A GTP-exchange factor required for cell orientation (1998) Nature, 391 (6663), pp. 195-198
  • Nern, A., Arkowitz, R.A., A Cdc24p-Far1p-Gbetagamma protein complex required for yeast orientation during mating (1999) J Cell Biol, 144 (6), pp. 1187-1202
  • Lisman, J.E., Raghavachari, S., Tsien, R.W., The sequence of events that underlie quantal transmission at central glutamatergic synapses (2007) Nat Rev Neurosci, 8 (8), pp. 597-609
  • Kim, J.Y., Borleis, J.A., Devreotes, P.N., Switching of chemoattractant receptors programs development and morphogenesis in Dictyostelium: Receptor subtypes activate common responses at different agonist concentrations (1998) Dev Biol, 197 (1), pp. 117-128
  • Sourjik, V., Wingreen, N.S., Responding to chemical gradients: Bacterial chemotaxis (2012) Curr Opin Cell Biol, 24 (2), pp. 262-268
  • Friedlander, T., Brenne, N., Adaptive response and enlargement of dynamic range (2011) Math Biosci Eng, 8 (2), pp. 515-528
  • Becker, V., Covering a broad dynamic range: Information processing at the erythropoietin receptor (2010) Science, 328 (5984), pp. 1404-1408
  • Behar, M., Hao, N., Dohlman, H.G., Elston, T.C., Dose-to-duration encoding and signaling beyond saturation in intracellular signaling networks (2008) PLOS Comput Biol, 4 (10), p. e1000197
  • Edelstein, S.J., Stefan, M.I., Le Novère, N., Ligand depletion in vivo modulates the dynamic range and cooperativity of signal transduction (2010) PLoS ONE, 5 (1), p. e8449
  • Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K., Balázsi, G., Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression (2009) Proc Natl Acad Sci USA, 106 (13), pp. 5123-5128
  • Madar, D., Dekel, E., Bren, A., Alon, U., Negative auto-regulation increases the input dynamic-range of the arabinose system of Escherichia coli (2011) BMC Syst Biol, 5, p. 111
  • Bergmann, S., Pre-steady-state decoding of the Bicoid morphogen gradient (2007) PLoS Biol, 5 (2), p. e46
  • Tamari, Z., Barkai, N., Improved readout precision of the Bicoid morphogen gradient by early decoding (2012) J Biol Phys, 38 (2), pp. 317-329
  • Mackay, V.L., The Saccharomyces cerevisiae BAR1 gene encodes an exported protein with homology to pepsin (1988) Proc Natl Acad Sci USA, 85 (1), pp. 55-59
  • Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P., Detailed simulations of cell biology with Smoldyn 2. 1 (2010) PLOS Comput Biol, 6 (3), p. e1000705
  • Rappaport, N., Barkai, N., Disentangling signaling gradients generated by equivalent sources (2012) J Biol Phys, 38 (2), pp. 267-278
  • Kuo, C.-C.C., Inhibitory GEF phosphorylation provides negative feedback in the yeast polarity circuit (2014) Curr Biol, 24 (7), pp. 753-759
  • Wu, C.-F.F., Lew, D.J., Beyond symmetry-breaking: Competition and negative feedback in GTPase regulation (2013) Trends Cell Biol, 23 (10), pp. 476-483
  • Lauffenburger, D.A., Linderman, J.J., (1993) Receptors: Models for Binding, Trafficking, and Signaling, , (Oxford Univ Press, New York)
  • Ma, W., Trusina, A., El-Samad, H., Lim, W.A., Tang, C., Defining network topologies that can achieve biochemical adaptation (2009) Cell, 138 (4), pp. 760-773
  • Kholodenko, B.N., Hancock, J.F., Kolch, W., Signalling ballet in space and time (2010) Nat Rev Mol Cell Biol, 11 (6), pp. 414-426
  • Guthrie, C., Fink, G.R., (1991) Methods in Enzymology, Guide to Yeast Genetics and Molecular Biology, , (Academic, San Diego)
  • Gordon, Single-cell quantification of molecules and rates using opensource microscope-based cytometry (2007) Nat Methods, 4 (2), pp. 175-181
  • Bush, A., Colman-Lerner, A., Quantitative measurement of protein relocalization in live cells (2013) Biophys J, 104 (3), pp. 727-736
  • Monahan, J., Gewirth, A.A., Nuzzo, R.G., A method for filling complex polymeric microfluidic devices and arrays (2001) Anal Chem, 73 (13), pp. 3193-3197
  • Liu, B., Parts-per-million of polyethylene glycol as a non-interfering blocking agent for homogeneous biosensor development (2013) Anal Chem, 85 (21), pp. 10045-10050
  • Efron, B., Tibshirani, R., (1994) An Introduction to the Bootstrap, , (Chapman and Hall, New York)
  • Cedersund, G., Roll, J., Systems biology: Model based evaluation and comparison of potential explanations for given biological data (2009) FEBS J, 276 (4), pp. 903-922
  • Butty, A.C., Pryciak, P.M., Huang, L.S., Herskowitz, I., Peter, M., The role of Far1p in linking the heterotrimeric G protein to polarity establishment proteins during yeast mating (1998) Science, 282 (5393), pp. 1511-1516
  • Leeuw, T., Pheromone response in yeast: Association of Bem1p with proteins of the MAP kinase cascade and actin (1995) Science, 270 (5239), pp. 1210-1213

Citas:

---------- APA ----------
Ventura, A.C., Bush, A., Vasen, G., Goldín, M.A., Burkinshaw, B., Bhattacharjee, N., Folch, A.,..., Colman-Lerner, A. (2014) . Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range. Proceedings of the National Academy of Sciences of the United States of America, 111(37), E3860-E3869.
http://dx.doi.org/10.1073/pnas.1322761111
---------- CHICAGO ----------
Ventura, A.C., Bush, A., Vasen, G., Goldín, M.A., Burkinshaw, B., Bhattacharjee, N., et al. "Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range" . Proceedings of the National Academy of Sciences of the United States of America 111, no. 37 (2014) : E3860-E3869.
http://dx.doi.org/10.1073/pnas.1322761111
---------- MLA ----------
Ventura, A.C., Bush, A., Vasen, G., Goldín, M.A., Burkinshaw, B., Bhattacharjee, N., et al. "Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range" . Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 37, 2014, pp. E3860-E3869.
http://dx.doi.org/10.1073/pnas.1322761111
---------- VANCOUVER ----------
Ventura, A.C., Bush, A., Vasen, G., Goldín, M.A., Burkinshaw, B., Bhattacharjee, N., et al. Utilization of extracellular information before ligand-receptor binding reaches equilibrium expands and shifts the input dynamic range. Proc. Natl. Acad. Sci. U. S. A. 2014;111(37):E3860-E3869.
http://dx.doi.org/10.1073/pnas.1322761111