Artículo

Katz, M.J.; Acevedo, J.M.; Loenarz, C.; Galagovsky, D.; Liu-Yi, P.; Pérez-Pepe, M.; Thalhammer, A.; Sekirnik, R.; Gec, W.; Melani, M.; Thomas, M.G.; Simonetta, S.; Boccaccio, G.L.; Schofield, C.J.; Cockman, M.E.; Ratcliffe, P.J.; Wappner, P. "Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth" (2014) Proceedings of the National Academy of Sciences of the United States of America. 111(11):4025-4030
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Genome sequences predict the presence of many 2-oxoglutarate (2OG)-dependent oxygenases of unknown biochemical and biological functions in Drosophila. Ribosomal protein hydroxylation is emerging as an important 2OG oxygenase catalyzed pathway, but its biological functions are unclear. We report investigations on the function of Sudestada1 (Sud1), a Drosophila ribosomal oxygenase. As with its human and yeast homologs, OGFOD1 and Tpa1p, respectively, we identified Sud1 to catalyze prolyl-hydroxylation of the small ribosomal subunit protein RPS23. Like OGFOD1, Sud1 catalyzes a single prolyl-hydroxylation of RPS23 in contrast to yeast Tpa1p, where Pro-64 dihydroxylation is observed. RNAi-mediated Sud1 knockdown hinders normal growth in different Drosophila tissues. Growth impairment originates from both reduction of cell size and diminution of the number of cells and correlates with impaired translation efficiency and activation of the unfolded protein response in the endoplasmic reticulum. This is accompanied by phosphorylation of eIF2a and concomitant formation of stress granules, as well as promotion of autophagy and apoptosis. These observations, together with those on enzyme homologs described in the companion articles, reveal conserved biochemical and biological roles for a widely distributed ribosomal oxygenase.

Registro:

Documento: Artículo
Título:Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth
Autor:Katz, M.J.; Acevedo, J.M.; Loenarz, C.; Galagovsky, D.; Liu-Yi, P.; Pérez-Pepe, M.; Thalhammer, A.; Sekirnik, R.; Gec, W.; Melani, M.; Thomas, M.G.; Simonetta, S.; Boccaccio, G.L.; Schofield, C.J.; Cockman, M.E.; Ratcliffe, P.J.; Wappner, P.
Filiación:Fundación Instituto Leloir, C1405BWE Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, C1405BWE Buenos Aires, Argentina
Chemistry Research Laboratory, Oxford Centre for Integrative Systems Biology, University of Oxford, Oxford OX1 3TA, United Kingdom
Centre for Cellular and Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Dioxygenase; Fruit fly; Proline; Ribosome; Tranlational stress; fungal protein; initiation factor 2alpha; messenger RNA; OGFOD1 protein; procollagen proline 2 oxoglutarate 4 dioxygenase; protein; ribosome protein; RNA; rps 23 protein; sudestada 1 prolyl hydroxylase; Tpa1p protein; unclassified drug; animal tissue; apoptosis; article; autophagy; biocatalysis; cell count; cell homeostasis; cell size; controlled study; dihydroxylation; Drosophila; Drosophila melanogaster; endoplasmic reticulum; female; gene silencing; homeostasis; human; hydroxylation; nonhuman; organ growth; priority journal; protein phosphorylation; protein processing; reduction; RNA interference; RNA translation; sequence homology; unfolded protein response; dioxygenase; fruit fly; proline; ribosome; tranlational stress; Animals; Animals, Genetically Modified; Apoptosis; Autophagy; Blotting, Western; Body Weights and Measures; Chromatography, Liquid; DNA Primers; Drosophila; Drosophila Proteins; Fat Body; Female; Gene Knockdown Techniques; Homeostasis; Hydroxylation; Prolyl Hydroxylases; Protein Biosynthesis; Protein Processing, Post-Translational; Real-Time Polymerase Chain Reaction; Ribosomal Proteins; RNA Interference; Tandem Mass Spectrometry; Unfolded Protein Response
Año:2014
Volumen:111
Número:11
Página de inicio:4025
Página de fin:4030
DOI: http://dx.doi.org/10.1073/pnas.1314485111
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:procollagen proline 2 oxoglutarate 4 dioxygenase, 9028-06-2; protein, 67254-75-5; RNA, 63231-63-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v111_n11_p4025_Katz

Referencias:

  • Loenarz, C., Schofield, C.J., Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases (2011) Trends Biochem Sci, 36 (1), pp. 7-18
  • Ozer, A., Bruick, R.K., Non-heme dioxygenases: Cellular sensors and regulators jelly rolled into one? (2007) Nat Chem Biol, 3 (3), pp. 144-153
  • McDonough, M.A., Loenarz, C., Chowdhury, R., Clifton, I.J., Schofield, C.J., Structural studies on human 2-oxoglutarate dependent oxygenases (2010) Curr Opin Struct Biol, 20 (6), pp. 659-672
  • Valegard, K., Van Terwisscha Scheltinga, A.C., Lloyd, M.D., Hara, T., Ramaswamy, S., Perrakis, A., Thompson, A., Andersson, I., Structure of a cephalosporin synthase (1998) Nature, 394 (6695), pp. 805-809. , DOI 10.1038/29575
  • Tsukada, Y., Hydroxylation mediates chromatin demethylation (2012) J Biochem, 151 (3), pp. 229-246
  • Loenarz, C., Schofield, C.J., Expanding chemical biology of 2-oxoglutarate oxygenases (2008) Nature Chemical Biology, 4 (3), pp. 152-156. , DOI 10.1038/nchembio0308-152, PII NCHEMBIO0308152
  • DiTacchio, L., Histone lysine demethylase jarid1a activates clock-bmal1 and influences the circadian clock (2011) Science, 333 (6051), pp. 1881-1885
  • Herz, H.M., The h3k27me3 demethylase dutx is a suppressor of notch-And rb-dependent tumors in drosophila (2010) Mol Cell Biol, 30 (10), pp. 2485-2497
  • Centanin, L., Ratcliffe, P.J., Wappner, P., Reversion of lethality and growth defects in Fatiga oxygen-sensor mutant flies by loss of Hypoxia-Inducible Factor-α/Sima (2005) EMBO Reports, 6 (11), pp. 1070-1075. , DOI 10.1038/sj.embor.7400528, PII 7400528
  • Jaakkola, P., Mole, D.R., Tian, Y.-M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Von Kriegsheim, A., Ratcliffe, P.J., Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation (2001) Science, 292 (5516), pp. 468-472
  • Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Kaelin Jr., W.G., HIFα targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing (2001) Science, 292 (5516), pp. 464-468
  • Mecinovi-c, J., Loenarz, C., Chowdhury, R., Schofield, C.J., 2-Oxoglutarate analogue inhibitors of prolyl hydroxylase domain 2 (2009) Bioorg Med Chem Lett, 19 (21), pp. 6192-6195
  • Leung, I.K., Reporter ligand nmr screening method for 2-oxoglutarate oxygenase inhibitors (2013) J Med Chem, 56 (2), pp. 547-555
  • McDonough, M.A., Li, V., Flashman, E., Chowdhury, R., Mohr, C., Lienard, B.M.R., Zondlo, J., Schofield, C.J., Cellular oxygen sensing: Crystal structure of hypoxia-inducible factor prolyl hydroxylase (PHD2) (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (26), pp. 9814-9819. , DOI 10.1073/pnas.0601283103
  • Henri, J., Structural and functional insights into saccharomyces cerevisiae tpa1, a putative prolylhydroxylase influencing translation termination and transcription (2010) J Biol Chem, 285 (40), pp. 30767-30778
  • Keeling, K.M., Salas-Marco, J., Osherovich, L.Z., Bedwell, D.M., Tpa1p is part of an mRNP complex that influences translation termination, mRNA deadenylation, and mRNA turnover in Saccharomyces cerevisiae (2006) Molecular and Cellular Biology, 26 (14), pp. 5237-5248. , DOI 10.1128/MCB.02448-05
  • Hughes, B.T., Espenshade, P.J., Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member (2008) EMBO Journal, 27 (10), pp. 1491-1501. , DOI 10.1038/emboj.2008.83, PII EMBOJ200883
  • Lee, C.Y., Yeh, T.L., Hughes, B.T., Espenshade, P.J., Regulation of the sre1 hypoxic transcription factor by oxygen-dependent control of dna binding (2011) Mol Cell, 44 (2), pp. 225-234
  • Saito, K., Adachi, N., Koyama, H., Matsushita, M., Ogfod1, a member of the 2-oxoglutarate and iron dependent dioxygenase family, functions in ischemic signaling (2010) FEBS Lett, 584 (15), pp. 3340-3347
  • Wehner, K.A., Schütz, S., Sarnow, P., Ogfod1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress (2010) Mol Cell Biol, 30 (8), p. 2016
  • Loenarz, C., Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy (2014) Proc Natl Acad Sci USA, 111, pp. 4019-4024
  • Singleton, R.S., Ogfod1 catalyses prolyl hydroxylation of rps23 and is involved in translation control and stress granule formation (2014) Proc Natl Acad Sci USA, 111, pp. 4031-4036
  • Kim, H.S., Crystal structure of tpa1 from saccharomyces cerevisiae, a component of the messenger ribonucleoprotein complex (2010) Nucleic Acids Res, 38 (6), pp. 2099-2110
  • Delanoue, R., Slaidina, M., Léopold, P., The steroid hormone ecdysone controls systemic growth by repressing dmyc function in drosophila fat cells (2010) Dev Cell, 18 (6), pp. 1012-1021
  • Colombani, J., Raisin, S., Pantalacci, S., Radimerski, T., Montagne, J., Leopold, P., A nutrient sensor mechanism controls Drosophila growth (2003) Cell, 114 (6), pp. 739-749. , DOI 10.1016/S0092-8674(03)00713-X
  • Lambertsson, A., The minute genes in drosophila and their molecular functions (1998) Adv Genet, 38, pp. 69-134
  • Lin, J.I., Drosophila ribosomal protein mutants control tissue growth nonautonomously via effects on the prothoracic gland and ecdysone (2011) PLoS Genet, 7 (12), pp. e1002408
  • Farny, N.G., Kedersha, N.L., Silver, P.A., Metazoan stress granule assembly is mediated by p-eif2alpha-dependent and -independent mechanisms (2009) RNA, 15 (10), pp. 1814-1821
  • Hetz, C., The unfolded protein response: Controlling cell fate decisions under er stress and beyond (2012) Nat Rev Mol Cell Biol, 13 (2), pp. 89-102
  • Ryoo, H.D., Domingos, P.M., Kang, M.-J., Steller, H., Unfolded protein response in a Drosophila model for retinal degeneration (2007) EMBO Journal, 26 (1), pp. 242-252. , DOI 10.1038/sj.emboj.7601477, PII 7601477
  • Kroemer, G., Mariño, G., Levine, B., Autophagy and the integrated stress response (2010) Mol Cell, 40 (2), pp. 280-293
  • Scott, R.C., Juhasz, G., Neufeld, T.P., Direct induction of autophagy by atg1 inhibits cell growth and induces apoptotic cell death (2007) Current Biology, 17 (1), pp. 1-11. , DOI 10.1016/j.cub.2006.10.053, PII S0960982206024286
  • Wullschleger, S., Loewith, R., Hall, M.N., TOR signaling in growth and metabolism (2006) Cell, 124 (3), pp. 471-484. , DOI 10.1016/j.cell.2006.01.016, PII S0092867406001085
  • Ge, W., Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans (2012) Nat Chem Biol, 8 (12), pp. 960-962
  • Pomar, N., Berlanga, J.J., Campuzano, S., Hernandez, G., Elias, M., De Haro, C., Functional characterization of Drosophila melanogaster PERK eukaryotic initiation factor 2α (eIF2α) kinase (2003) European Journal of Biochemistry, 270 (2), pp. 293-306. , DOI 10.1046/j.1432-1033.2003.03383.x
  • Boglev, Y., Autophagy induction is a tor-And tp53-independent cell survival response in a zebrafish model of disrupted ribosome biogenesis (2013) PLoS Genet, 9 (2), pp. e1003279
  • Danilova, N., Sakamoto, K.M., Lin, S., Ribosomal protein s19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family (2008) Blood, 112 (13), pp. 5228-5237

Citas:

---------- APA ----------
Katz, M.J., Acevedo, J.M., Loenarz, C., Galagovsky, D., Liu-Yi, P., Pérez-Pepe, M., Thalhammer, A.,..., Wappner, P. (2014) . Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proceedings of the National Academy of Sciences of the United States of America, 111(11), 4025-4030.
http://dx.doi.org/10.1073/pnas.1314485111
---------- CHICAGO ----------
Katz, M.J., Acevedo, J.M., Loenarz, C., Galagovsky, D., Liu-Yi, P., Pérez-Pepe, M., et al. "Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth" . Proceedings of the National Academy of Sciences of the United States of America 111, no. 11 (2014) : 4025-4030.
http://dx.doi.org/10.1073/pnas.1314485111
---------- MLA ----------
Katz, M.J., Acevedo, J.M., Loenarz, C., Galagovsky, D., Liu-Yi, P., Pérez-Pepe, M., et al. "Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth" . Proceedings of the National Academy of Sciences of the United States of America, vol. 111, no. 11, 2014, pp. 4025-4030.
http://dx.doi.org/10.1073/pnas.1314485111
---------- VANCOUVER ----------
Katz, M.J., Acevedo, J.M., Loenarz, C., Galagovsky, D., Liu-Yi, P., Pérez-Pepe, M., et al. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc. Natl. Acad. Sci. U. S. A. 2014;111(11):4025-4030.
http://dx.doi.org/10.1073/pnas.1314485111