Artículo

Plazas, P.V.; Nicol, X.; Spitzer, N.C. "Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3" (2013) Proceedings of the National Academy of Sciences of the United States of America. 110(4):1524-1529
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The role of electrical activity in axon guidance has been extensively studied in vitro. To better understand its role in the intact nervous system, we imaged intracellular Ca2+ in zebrafish primary motor neurons (PMN) during axon pathfinding in vivo. We found that PMN generate specific patterns of Ca2+ spikes at different developmental stages. Spikes arose in the distal axon of PMN and were propagated to the cell body. Suppression of Ca 2+ spiking activity in single PMN led to stereotyped errors, but silencing all electrical activity had no effect on axon guidance, indicating that an activitybased competition rule regulates this process. This competition was not mediated by synaptic transmission. Combination of PlexinA3 knockdown with suppression of Ca2+ activity in single PMN produced a synergistic increase in the incidence of pathfinding errors. However, expression of PlexinA3 transcripts was not regulated by activity. Our results provide an in vivo demonstration of the intersection of spontaneous electrical activity with the PlexinA3 guidance molecule receptor in regulation of axon pathfinding.

Registro:

Documento: Artículo
Título:Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3
Autor:Plazas, P.V.; Nicol, X.; Spitzer, N.C.
Filiación:Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California at San Diego, San Diego, CA 92093, United States
Instituto de Ingeniería Genética y Biología Molecular (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
Centre de Recherche Institut de la Vision, Unité Mixte de Recherche, Unité Mixte de Recherche S968, 17 rue Moreau, 75012 Paris, France
Palabras clave:inwardly rectifying potassium channel subunit Kir2.1; plexin; plexin A3; unclassified drug; animal cell; animal tissue; article; calcium cell level; developmental stage; electric activity; embryo; gene silencing; in vivo study; motoneuron; nerve fiber; nerve fiber growth; nonhuman; perikaryon; primary motor cortex; priority journal; protein expression; regulatory mechanism; signal transduction; spike; stereotypy; synaptic transmission; zebra fish; Animals; Animals, Genetically Modified; Axons; Calcium Signaling; Gene Knockdown Techniques; Humans; Motor Neurons; Neural Pathways; Potassium Channels, Inwardly Rectifying; Receptors, Cell Surface; Recombinant Proteins; Synaptic Transmission; Zebrafish; Zebrafish Proteins; Danio rerio
Año:2013
Volumen:110
Número:4
Página de inicio:1524
Página de fin:1529
DOI: http://dx.doi.org/10.1073/pnas.1213048110
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:KCNJ2 protein, human; Plxna3 protein, zebrafish; Potassium Channels, Inwardly Rectifying; Receptors, Cell Surface; Recombinant Proteins; Zebrafish Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v110_n4_p1524_Plazas

Referencias:

  • Tessier-Lavigne, M., Goodman, C.S., The molecular biology of axon guidance (1996) Science, 274 (5290), pp. 1123-1133
  • Dickson, B.J., Molecular mechanisms of axon guidance (2002) Science, 298 (5600), pp. 1959-1964
  • Katz, L.C., Shatz, C.J., Synaptic activity and the construction of cortical circuits (1996) Science, 274 (5290), pp. 1133-1138
  • Erzurumlu, R.S., Kind, P.C., Neural activity: Sculptor of 'barrels' in the neocortex (2001) Trends Neurosci, 24 (10), pp. 589-595
  • Gomez, T.M., Spitzer, N.C., In vivo regulation of axon extension and pathfinding by growth-cone calcium transients (1999) Nature, 397 (6717), pp. 350-355
  • Hanson, M.G., Landmesser, L.T., Normal patterns of spontaneous activity are required for correct motor axon guidance and the expression of specific guidance molecules (2004) Neuron, 43 (5), pp. 687-701
  • Nicol, X., Camp oscillations and retinal activity are permissive for ephrin signaling during the establishment of the retinotopic map (2007) Nat Neurosci, 10 (3), pp. 340-347
  • Ming, G., Henley, J., Tessier-Lavigne, M., Song, H., Poo, M., Electrical activity modulates growth cone guidance by diffusible factors (2001) Neuron, 29 (2), pp. 441-452
  • Myers, P.Z., Eisen, J.S., Westerfield, M., Development and axonal outgrowth of identified motoneurons in the zebrafish (1986) J Neurosci, 6 (8), pp. 2278-2289
  • Beattie, C.E., Control of motor axon guidance in the zebrafish embryo (2000) Brain Res Bull, 53 (5), pp. 489-500
  • Rodino-Klapac, L.R., Beattie, C.E., Zebrafish topped is required for ventral motor axon guidance (2004) Dev Biol, 273 (2), pp. 308-320
  • Roos, M., Schachner, M., Bernhardt, R.R., Zebrafish semaphorin z1b inhibits growing motor axons in vivo (1999) Mech Dev, 87 (1-2), pp. 103-117
  • Feldner, J., Neuropilin-1a is involved in trunk motor axon outgrowth in embryonic zebrafish (2005) Dev Dyn, 234 (3), pp. 535-549
  • Feldner, J., Plexina3 restricts spinal exit points and branching of trunk motor nerves in embryonic zebrafish (2007) J Neurosci, 27 (18), pp. 4978-4983
  • Palaisa, K.A., Granato, M., Analysis of zebrafish sidetracked mutants reveals a novel role for plexin a3 in intraspinal motor axon guidance (2007) Development, 134 (18), pp. 3251-3257
  • Flanagan-Steet, H., Fox, M.A., Meyer, D., Sanes, J.R., Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations (2005) Development, 132 (20), pp. 4471-4481
  • Scott, E.K., Targeting neural circuitry in zebrafish using gal4 enhancer trapping (2007) Nat Methods, 4 (4), pp. 323-326
  • Del Bene, F., Filtering of visual information in the tectum by an identified neural circuit (2010) Science, 330 (6004), pp. 669-673
  • Warp, E., Emergence of patterned activity in the developing zebrafish spinal cord (2012) Curr Biol, 22 (2), pp. 93-102
  • Wyart, C., Optogenetic dissection of a behavioural module in the vertebrate spinal cord (2009) Nature, 461 (7262), pp. 407-410
  • Hua, J.Y., Smear, M.C., Baier, H., Smith, S.J., Regulation of axon growth in vivo by activity-based competition (2005) Nature, 434 (7036), pp. 1022-1026
  • Burrone, J., O'Byrne, M., Murthy, V.N., Multiple forms of synaptic plasticity triggered by selective suppression of activity in individual neurons (2002) Nature, 420 (6914), pp. 414-418
  • LeVay, S., Wiesel, T.N., Hubel, D.H., The development of ocular dominance columns in normal and visually deprived monkeys (1980) J Comp Neurol, 191 (1), pp. 1-51
  • Yu, C.R., Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map (2004) Neuron, 42 (4), pp. 553-566
  • Ben Fredj, N., Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection (2010) J Neurosci, 30 (32), pp. 10939-10951
  • Ashworth, R., Bolsover, S.R., Spontaneous activity-independent intracellular calcium signals in the developing spinal cord of the zebrafish embryo (2002) Brain Res Dev Brain Res, 139 (2), pp. 131-137
  • Muto, A., Genetic visualization with an improved gcamp calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish (2011) Proc Natl Acad Sci USA, 108 (13), pp. 5425-5430
  • Shelly, M., Local and long-range reciprocal regulation of camp and cgmp in axon/dendrite formation (2010) Science, 327 (5965), pp. 547-552
  • Moreno, R.L., Ribera, A.B., Zebrafish motor neuron subtypes differ electrically prior to axonal outgrowth (2009) J Neurophysiol, 102 (4), pp. 2477-2484
  • Appel, B., Motoneuron fate specification revealed by patterned lim homeobox gene expression in embryonic zebrafish (1995) Development, 121 (12), pp. 4117-4125
  • Saint-Amant, L., Drapeau, P., Synchronization of an embryonic network of identified spinal interneurons solely by electrical coupling (2001) Neuron, 31 (6), pp. 1035-1046
  • Hanson, M.G., Landmesser, L.T., Increasing the frequency of spontaneous rhythmic activity disrupts pool-specific axon fasciculation and pathfinding of embryonic spinal motoneurons (2006) J Neurosci, 26 (49), pp. 12769-12780
  • Hensch, T.K., Fagiolini, M., Excitatory-inhibitory balance and critical period plasticity in developing visual cortex (2005) Prog Brain Res, 147, pp. 115-124
  • Mizuno, H., Hirano, T., Tagawa, Y., Evidence for activity-dependent cortical wiring: Formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity (2007) J Neurosci, 27 (25), pp. 6760-6770
  • Serizawa, S., A neuronal identity code for the odorant receptor-specific and activity-dependent axon sorting (2006) Cell, 127 (5), pp. 1057-1069
  • Wang, C.L., Activity-dependent development of callosal projections in the somatosensory cortex (2007) J Neurosci, 27 (42), pp. 11334-11342
  • Eisen, J.S., Pike, S.H., Debu, B., The growth cones of identified motoneurons in embryonic zebrafish select appropriate pathways in the absence of specific cellular interactions (1989) Neuron, 2 (1), pp. 1097-1104
  • Nishiyama, M., Cyclic amp/gmp-dependent modulation of ca2+ channels sets the polarity of nerve growth-cone turning (2003) Nature, 423 (6943), pp. 990-995
  • Carrillo, R.A., Olsen, D.P., Yoon, K.S., Keshishian, H., Presynaptic activity and camkii modulate retrograde semaphorin signaling and synaptic refinement (2010) Neuron, 68 (1), pp. 32-44
  • Blair, N.T., Kaczmarek, J.S., Clapham, D.E., Intracellular calcium strongly potentiates agonist-activated trpc5 channels (2009) J Gen Physiol, 133 (5), pp. 525-546
  • Kaczmarek, J.S., Riccio, A., Clapham, D.E., Calpain cleaves and activates the trpc5 channel to participate in semaphorin 3a-induced neuronal growth cone collapse (2012) Proc Natl Acad Sci USA, 109 (20), pp. 7888-7892
  • Nishiyama, M., Von Schimmelmann, M.J., Togashi, K., Findley, W.M., Hong, K., Membrane potential shifts caused by diffusible guidance signals direct growth-cone turning (2008) Nat Neurosci, 11 (7), pp. 762-771
  • Reber, M., Burrola, P., Lemke, G., A relative signalling model for the formation of a topographic neural map (2004) Nature, 431 (7010), pp. 847-853

Citas:

---------- APA ----------
Plazas, P.V., Nicol, X. & Spitzer, N.C. (2013) . Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. Proceedings of the National Academy of Sciences of the United States of America, 110(4), 1524-1529.
http://dx.doi.org/10.1073/pnas.1213048110
---------- CHICAGO ----------
Plazas, P.V., Nicol, X., Spitzer, N.C. "Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3" . Proceedings of the National Academy of Sciences of the United States of America 110, no. 4 (2013) : 1524-1529.
http://dx.doi.org/10.1073/pnas.1213048110
---------- MLA ----------
Plazas, P.V., Nicol, X., Spitzer, N.C. "Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3" . Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 4, 2013, pp. 1524-1529.
http://dx.doi.org/10.1073/pnas.1213048110
---------- VANCOUVER ----------
Plazas, P.V., Nicol, X., Spitzer, N.C. Activity-dependent competition regulates motor neuron axon pathfinding via PlexinA3. Proc. Natl. Acad. Sci. U. S. A. 2013;110(4):1524-1529.
http://dx.doi.org/10.1073/pnas.1213048110