Artículo

Hanski, I.; Zurita, G.A.; Bellocq, M.I.; Rybicki, J. "Species-fragmented area relationship" (2013) Proceedings of the National Academy of Sciences of the United States of America. 110(31):12715-12720
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The species-area relationship (SAR) gives a quantitative description of the increasing number of species in a community with increasing area of habitat. In conservation, SARs have been used to predict the number of extinctions when the area of habitat is reduced. Such predictions are most needed for landscapes rather than for individual habitat fragments, but SAR-based predictions of extinctions for landscapes with highly fragmented habitat are likely to be biased because SAR assumes contiguous habitat. In reality, habitat loss is typically accompanied by habitat fragmentation. To quantify the effect of fragmentation in addition to the effect of habitat loss on the number of species, we extend the power-law SAR to the species-fragmented area relationship. This model unites the single-species metapopulation theory with the multispecies SAR for communities. We demonstrate with a realistic simulation model and with empirical data for forest-inhabiting subtropical birds that the species-fragmented area relationship gives a far superior prediction than SAR of the number of species in fragmented landscapes. The results demonstrate that for communities of species that are not well adapted to live in fragmented landscapes, the conventional SAR underestimates the number of extinctions for landscapes in which little habitat remains and it is highly fragmented. © PNAS 2013.

Registro:

Documento: Artículo
Título:Species-fragmented area relationship
Autor:Hanski, I.; Zurita, G.A.; Bellocq, M.I.; Rybicki, J.
Filiación:Department of Biosciences, United States
Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Consejo Nacional de Investigaciones, Científicas y Técnicas, Puerto Iguazú, 3370 Misiones Province, Argentina
Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
Helsinki Institute for Information Technology, Department of Computer Science, University of Helsinki, FI-00014, Helsinki, Finland
Palabras clave:Atlantic forest; Extinction threshold; Habitat conversion; Metapopulation capacity; Nagoya biodiversity agreement; article; bird; habitat; habitat fragmentation; metapopulation; nonhuman; priority journal; simulation; species; species area relationship; biological model; ecosystem; tree; tropic climate; Ecosystem; Models, Biological; Trees; Tropical Climate
Año:2013
Volumen:110
Número:31
Página de inicio:12715
Página de fin:12720
DOI: http://dx.doi.org/10.1073/pnas.1311491110
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v110_n31_p12715_Hanski

Referencias:

  • Rosenzweig, M.L., (1995) Species Diversity in Space and Time, , (Cambridge Univ Press, Cambridge, UK)
  • Lomolino, M.V., Ecology's most general, yet protean pattern: The species-area relationship (2000) J Biogeogr, 27 (1), pp. 17-26
  • Blackburn, T.M., (2003) Macroecology: Concepts and Consequences, , ed Gaston KJ (Blackwell, Oxford)
  • Arrhenius, O., Species and area (1921) J Ecol, 9 (1), pp. 95-99
  • Gleason, H.A., On the relation of species and area (1922) Ecology, 3 (2), pp. 158-162
  • MacArthur, R.H., Wilson, E.O., (1967) The Theory of Island Biogeography, , (Princeton Univ Press, Princeton)
  • Connor, E.F., McCoy, E.D., The statistics and biology of the species-area relationship (1979) Am Nat, 113 (6), pp. 791-833
  • Triantis, K.A., Guilhaumon, F., Whittaker, R.J., The island species-area relationship: Biology and statistics (2012) J Biogeogr, 39 (2), pp. 215-231
  • Brown, J.H., Mammals on mountaintops: Nonequilibrium insular biogeography (1971) Am Nat, 105 (945), pp. 467-478
  • Steffan-Dewenter, I., Tscharntke, T., Butterfly community structure in fragmented habitats (2000) Ecol Lett, 3 (5), pp. 449-456
  • May, R.M., Lawton, J.H., Stork, N.E., (1995) Extinction Rates, pp. 1-24. , eds Lawton JH, May RM (Oxford Univ Press, Oxford)
  • Pimm, S.L., Raven, P., Biodiversity. Extinction by numbers (2000) Nature, 403 (6772), pp. 843-845
  • Brooks, T.M., Habitat loss and extinction in the hotspots of biodiversity (2002) Conserv Biol, 16 (4), pp. 909-923
  • Brooks, T.M., Pimm, S.L., Collar, N.J., Deforestation predicts the number of threatened birds in insular southeast Asia (1997) Conserv Biol, 11 (2), pp. 382-394
  • Whitmore, T.C., (1992) Tropical Deforestation and Species Extinction, , ed Sayer JE (Chapman & Hall, London)
  • Pimm, S.L., Askins, R.A., Forest losses predict bird extinctions in eastern North America (1995) Proc Natl Acad Sci USA, 92 (20), pp. 9343-9347
  • Halley, J.M., Sgardeli, V., Monokrousos, N., Species-area relationships and extinction forecasts (2013) Ann N y Acad Sci, 1286 (1), pp. 50-61
  • Thomas, C.D., Extinction risk from climate change (2004) Nature, 427 (6970), pp. 145-148
  • He, F.L., Hubbell, S.P., Species-area relationships always overestimate extinction rates from habitat loss (2011) Nature, 473 (7347), pp. 368-371
  • Connor, E.F., McCoy, E.D., Species-area relationships (2001) Encycl Biodiv, 5, pp. 397-411
  • Budiansky, S., Extinction or miscalculation (1994) Nature, 370 (6485), p. 105
  • Hanski, I., (2005) The Shrinking World: Ecological Consequences of Habitat Loss, , (Int Ecology Inst, Oldendorf, Germany)
  • Fahrig, L., Effects of habitat fragmentation on biodiversity (2003) Annu Rev Ecol Evol Syst, 34, pp. 487-515
  • Didham, R.K., Kapos, V., Ewers, R.M., Rethinking the conceptual foundations of habitat fragmentation research (2012) Oikos, 121 (2), pp. 161-170
  • Fattorini, S., Borges, P.A.V., Species-area relationships underestimate extinction rates (2012) Acta Oecol. Int. J. Ecol, 40, pp. 27-30
  • Rybicki, J., Hanski, I., Species-area relationships and extinctions caused by habitat loss and fragmentation (2013) Ecol Lett, 16 (SUPPL. 1), pp. 27-38
  • Hanski, I., (1999) Metapopulation Ecology, , (Oxford Univ Press, New York)
  • Lande, R., Risks of population extinction from demographic and environmental stochasticity and random catastrophes (1993) Am Nat, 142 (6), pp. 911-927
  • Levins, R., Some demographic and genetic consequences of environmental heterogeneity for biological control (1969) Bull Entomol Soc Am, 15, pp. 237-240
  • Hanski, I., Ovaskainen, O., The metapopulation capacity of a fragmented landscape (2000) Nature, 404 (6779), pp. 755-758
  • Lande, R., Extinction thresholds in demographic models of territorial populations (1987) Am Nat, 130 (4), pp. 624-635
  • Bascompte, J., Sole, R.V., Habitat fragmentation and extinction thresholds in spatially explicit models (1996) J Anim Ecol, 65 (4), pp. 465-473
  • Thomas, C.D., Hanski, I., (2004) Ecology, Genetics, and Evolution of Metapopulations, pp. 489-514. , eds Hanski I, Gaggiotti OE (Elsevier, Amsterdam)
  • Andrén, H., Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review (1994) Oikos, 71 (3), pp. 355-366
  • Zurita, G.A., Bellocq, M.I., Spatial patterns of bird community similarity: Bird responses to landscape composition and configuration in the Atlantic forest (2010) Landscape Ecol, 25 (1), pp. 147-158
  • Anderson, R.M., May, R.M., (1991) Infectious Diseases of Humans: Dynamics and Control, , (Oxford Univ Press, Oxford)
  • Ovaskainen, O., Hanski, I., Spatially structured metapopulation models: Global and local assessment of metapopulation capacity (2001) Theor Popul Biol, 60 (4), pp. 281-302
  • Zurita, G.A., Pe'er, G., Bellocq, M.I., Hansbauer, M.M., Edge effects and their influence on habitat suitability calculations: A continuous approach applied to birds of the Atlantic forest (2012) J Appl Ecol, 49 (2), pp. 503-512
  • Ferraz, G., Rates of species loss from Amazonian forest fragments (2003) Proc Natl Acad Sci USA, 100 (24), pp. 14069-14073
  • Brooks, T.M., Pimm, S.L., Oyugi, J.O., Time lag between deforestation and bird extinction in tropical forest fragments (1999) Conserv Biol, 13 (5), pp. 1140-1150
  • Halley, J.M., Iwasa, Y., Neutral theory as a predictor of avifaunal extinctions after habitat loss (2011) Proc Natl Acad Sci USA, 108 (6), pp. 2316-2321
  • Canale, G.R., Peres, C.A., Guidorizzi, C.E., Gatto, C.A.F., Kierulff, M.C.M., Pervasive defaunation of forest remnants in a tropical biodiversity hotspot (2012) PLoS ONE, 7 (8), pp. e41671
  • Pardini, R., Bueno Ade, A., Gardner, T.A., Prado, P.I., Metzger, J.P., Beyond the fragmentation threshold hypothesis: Regime shifts in biodiversity across fragmented landscapes (2010) PLoS ONE, 5 (10), pp. e13666
  • Hanski, I., Habitat loss, the dynamics of biodiversity, and a perspective on conservation (2011) Ambio, 40 (3), pp. 248-255
  • Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., The brazilian atlantic forest: How much is left, and how is the remaining forest distributed? Implications for conservation (2009) Biol Conserv, 142 (6), pp. 1141-1153
  • (2005) Ecosystems and Human Well-being: Synthesis, , Millennium Ecosystem Assessment (Island Press, Washington, DC)
  • Barnosky, A.D., Has the Earth's sixth mass extinction already arrived? (2011) Nature, 471 (7336), pp. 51-57
  • Kuussaari, M., Extinction debt: A challenge for biodiversity conservation (2009) Trends Ecol Evol, 24 (10), pp. 564-571
  • Hanski, I., Ovaskainen, O., Extinction debt at extinction threshold (2002) Conserv Biol, 16 (3), pp. 666-673
  • Ovaskainen, O., Hanski, I., Transient dynamics in metapopulation response to perturbation (2002) Theor Popul Biol, 61 (3), pp. 285-295
  • Ovaskainen, O., Hanski, I., (2004) Ecology, Genetics, and Evolution of Metapopulations, pp. 73-103. , eds Hanski I, Gaggiotti OE (Elsevier, Amsterdam)
  • Moilanen, A., Smith, A.T., Hanski, I., Long-term dynamics in a metapopulation of the American pika (1998) Am Nat, 152 (4), pp. 530-542
  • Hanski, I., Connecting the parameters of local extinction and metapopulation dynamics (1998) Oikos, 83 (2), pp. 390-396
  • Ovaskainen, O., Long-term persistence of species and the SLOSS problem (2002) J Theor Biol, 218 (4), pp. 419-433
  • Zurita, G.A., Bellocq, M.I., Bird assemblages in anthropogenic habitats: Identifying a suitability gradient for native species in the Atlantic forest (2012) Biotropica, 44 (3), pp. 412-419

Citas:

---------- APA ----------
Hanski, I., Zurita, G.A., Bellocq, M.I. & Rybicki, J. (2013) . Species-fragmented area relationship. Proceedings of the National Academy of Sciences of the United States of America, 110(31), 12715-12720.
http://dx.doi.org/10.1073/pnas.1311491110
---------- CHICAGO ----------
Hanski, I., Zurita, G.A., Bellocq, M.I., Rybicki, J. "Species-fragmented area relationship" . Proceedings of the National Academy of Sciences of the United States of America 110, no. 31 (2013) : 12715-12720.
http://dx.doi.org/10.1073/pnas.1311491110
---------- MLA ----------
Hanski, I., Zurita, G.A., Bellocq, M.I., Rybicki, J. "Species-fragmented area relationship" . Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 31, 2013, pp. 12715-12720.
http://dx.doi.org/10.1073/pnas.1311491110
---------- VANCOUVER ----------
Hanski, I., Zurita, G.A., Bellocq, M.I., Rybicki, J. Species-fragmented area relationship. Proc. Natl. Acad. Sci. U. S. A. 2013;110(31):12715-12720.
http://dx.doi.org/10.1073/pnas.1311491110