Artículo

Frankel, N.; Wang, S.; Stern, D.L. "Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution" (2012) Proceedings of the National Academy of Sciences of the United States of America. 109(51):20975-20979
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Similar morphological, physiological, and behavioral features have evolved independently in different species, a pattern known as convergence. It is known that morphological convergence can occur through changes in orthologous genes. In some cases of convergence, cis-regulatory changes generate parallel modifications in the expression patterns of orthologous genes. Our understanding of how changes in cis-regulatory regions contribute to convergence is hampered, usually, by a limited understanding of the global cis-regulatory structure of the evolving genes. Here we examine the genetic causes of a case of precise phenotypic convergence between Drosophila sechellia and Drosophila ezoana, species that diverged ?40 Mya. Previous studies revealed that changes in multiple transcriptional enhancers of shavenbaby (svb, a transcript of the ovo locus) caused phenotypic evolution in the D. sechellia lineage. It has also been shown that the convergent phenotype of D. ezoana was likely caused by cis-regulatory evolution of svb. Here we show that the large-scale cis-regulatory architecture of svb is conserved between these Drosophila species. Furthermore, we show that the D. ezoana orthologs of the evolved D. sechellia enhancers have also evolved expression patterns that correlate precisely with the changes in the phenotype. Our results suggest that phenotypic convergence resulted frommultiple noncoding changes that occurred in parallel in the D. sechellia and D. ezoana lineages.

Registro:

Documento: Artículo
Título:Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution
Autor:Frankel, N.; Wang, S.; Stern, D.L.
Filiación:Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544, United States
Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, United States
Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
New Jersey Neuroscience Institute, JFK Medical Center, Edison, NJ 08818, United States
Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147-2408, United States
Palabras clave:Enhancer function; Evolutionary developmental biology; Parallel developmental evolution; article; cell lineage; Drosophila; gene expression; gene locus; genetic analysis; genetic transcription; molecular evolution; nonhuman; phenotype; priority journal; Animals; Developmental Biology; Drosophila; Drosophila melanogaster; Enhancer Elements, Genetic; Evolution, Molecular; Gene Expression Regulation; Genes, Reporter; Genetic Vectors; Models, Genetic; Molecular Sequence Data; Phenotype; Species Specificity; Transcription, Genetic; Drosophila ezoana; Drosophila sechellia; Mya; Spondias purpurea
Año:2012
Volumen:109
Número:51
Página de inicio:20975
Página de fin:20979
DOI: http://dx.doi.org/10.1073/pnas.1207715109
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v109_n51_p20975_Frankel

Referencias:

  • Wood, T.E., Burke, J.M., Rieseberg, L.H., Parallel genotypic adaptation: When evolution repeats itself (2005) Genetica, 123 (1-2), pp. 157-170
  • Wlasiuk, G., Khan, S., Switzer, W.M., Nachman, M.W., A history of recurrent positive selection at the toll-like receptor 5 in primates (2009) Mol Biol Evol, 26 (4), pp. 937-949
  • Streisfeld, M.A., Rausher, M.D., Genetic changes contributing to the parallel evolution of red floral pigmentation among Ipomoea species (2009) New Phytol, 183 (3), pp. 751-763
  • Chan, Y.F., Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer (2010) Science, 327 (5963), pp. 302-305
  • Shapiro, M.D., Bell, M.A., Kingsley, D.M., Parallel genetic origins of pelvic reduction in vertebrates (2006) Proc Natl Acad Sci USA, 103 (37), pp. 13753-13758
  • Gross, J.B., Borowsky, R., Tabin, C.J., A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus (2009) PLoS Genet, 5 (1), pp. e1000326
  • Bollback, J.P., Huelsenbeck, J.P., Parallel genetic evolution within and between bacteriophage species of varying degrees of divergence (2009) Genetics, 181 (1), pp. 225-234
  • Zhang, J., Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys (2006) Nat Genet, 38 (7), pp. 819-823
  • Prud'Homme, B., Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene (2006) Nature, 440 (7087), pp. 1050-1053
  • Sugawara, T., Parallelism of amino acid changes at the RH1 affecting spectral sensitivity among deep-water cichlids from Lakes Tanganyika and Malawi (2005) Proc Natl Acad Sci USA, 102 (15), pp. 5448-5453
  • Sucena, E., Delon, I., Jones, I., Payre, F., Stern, D.L., Regulatory evolution of shavenbaby/ ovo underlies multiple cases of morphological parallelism (2003) Nature, 424 (6951), pp. 935-938
  • Boucher, C.A., Ordered appearance of zidovudine resistance mutations during treatment of 18 human immunodeficiency virus-positive subjects (1992) J Infect Dis, 165 (1), pp. 105-110
  • Reed, R.D., Optix drives the repeated convergent evolution of butterfly wing pattern mimicry (2011) Science, 333 (6046), pp. 1137-1141
  • Dickinson, W.J., Tang, Y., Schuske, K., Akam, M., Conservation of molecular prepatterns during the evolution of cuticle morphology in Drosophila larvae (1993) Evolution, 47 (5), pp. 1396-1406
  • Sucena, E., Stern, D.L., Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby (2000) Proc Natl Acad Sci USA, 97 (9), pp. 4530-4534
  • Frankel, N., Morphological evolution caused by many subtle-effect substitutions in regulatory DNA (2011) Nature, 474 (7353), pp. 598-603
  • Frankel, N., Phenotypic robustness conferred by apparently redundant transcriptional enhancers (2010) Nature, 466 (7305), pp. 490-493
  • McGregor, A.P., Morphological evolution through multiple cis-regulatory mutations at a single gene (2007) Nature, 448 (7153), pp. 587-590
  • Mével-Ninio, M., Terracol, R., Salles, C., Vincent, A., Payre, F., Ovo, a Drosophila gene required for ovarian development, is specifically expressed in the germline and shares most of its coding sequences with shavenbaby, a gene involved in embryo patterning (1995) Mech Dev, 49 (1-2), pp. 83-95
  • Payre, F., Vincent, A., Carreno, S., Ovo/svb integrates Wingless and der pathways to control epidermis differentiation (1999) Nature, 400 (6741), pp. 271-275
  • McGaughey, D.M., Metrics of sequence constraint overlook regulatory sequences in an exhaustive analysis at phox2b (2008) Genome Res, 18 (2), pp. 252-260
  • Rebeiz, M., Posakony, J.W., GenePalette: A universal software tool for genome sequence visualization and analysis (2004) Dev Biol, 271 (2), pp. 431-438
  • Mount, D.W., Using the Basic Local Alignment Search Tool (BLAST) (2007) CSH Protoc, 2007. , pdb top17
  • Hare, E.E., Peterson, B.K., Iyer, V.N., Meier, R., Eisen, M.B., Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation (2008) PLoS Genet, 4 (6), pp. e1000106
  • Cande, J., Goltsev, Y., Levine, M.S., Conservation of enhancer location in divergent insects (2009) Proc Natl Acad Sci USA, 106 (34), pp. 14414-14419
  • Meireles-Filho, A.C., Stark, A., Comparative genomics of gene regulation-conservation and divergence of cis-regulatory information (2009) Curr Opin Genet Dev, 19 (6), pp. 565-570
  • De Rosa, R., Hox genes in brachiopods and priapulids and protostome evolution (1999) Nature, 399 (6738), pp. 772-776
  • Noordermeer, D., Variegated gene expression caused by cell-specific long-range DNA interactions (2011) Nat Cell Biol, 13 (8), pp. 944-951
  • Chanut-Delalande, H., Fernandes, I., Roch, F., Payre, F., Plaza, S., Shavenbaby couples patterning to epidermal cell shape control (2006) PLoS Biol, 4 (9), pp. e290
  • Nüsslein-Volhard, C., Wieschaus, E., Mutations affecting segment number and polarity in Drosophila (1980) Nature, 287 (5785), pp. 795-801
  • Stern, D.L., Orgogozo, V., The loci of evolution: How predictable is genetic evolution? (2008) Evolution, 62 (9), pp. 2155-2177
  • Stern, D.L., Orgogozo, V., Is genetic evolution predictable? (2009) Science, 323 (5915), pp. 746-751
  • Thummel, C.S., Pirrotta, V., New pCaSpeR P element vectors (1992) Drosoph Inf Serv, 71, p. 150
  • Thibault, S.T., A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac (2004) Nat Genet, 36 (3), pp. 283-287
  • Horn, C., Wimmer, E.A., A versatile vector set for animal transgenesis (2000) Dev Genes Evol, 210 (12), pp. 630-637
  • Handler, A.M., Harrell II, R.A., Germline transformation of Drosophila melanogaster with the piggyBac transposon vector (1999) Insect Mol Biol, 8 (4), pp. 449-457
  • Fernandes, I., Zona pellucida domain proteins remodel the apical compartment for localized cell shape changes (2010) Dev Cell, 18 (1), pp. 64-76
  • Bokor, P., DiNardo, S., The roles of hedgehog, wingless and lines in patterning the dorsal epidermis in Drosophila (1996) Development, 122 (4), pp. 1083-1092

Citas:

---------- APA ----------
Frankel, N., Wang, S. & Stern, D.L. (2012) . Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America, 109(51), 20975-20979.
http://dx.doi.org/10.1073/pnas.1207715109
---------- CHICAGO ----------
Frankel, N., Wang, S., Stern, D.L. "Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution" . Proceedings of the National Academy of Sciences of the United States of America 109, no. 51 (2012) : 20975-20979.
http://dx.doi.org/10.1073/pnas.1207715109
---------- MLA ----------
Frankel, N., Wang, S., Stern, D.L. "Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution" . Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 51, 2012, pp. 20975-20979.
http://dx.doi.org/10.1073/pnas.1207715109
---------- VANCOUVER ----------
Frankel, N., Wang, S., Stern, D.L. Conserved regulatory architecture underlies parallel genetic changes and convergent phenotypic evolution. Proc. Natl. Acad. Sci. U. S. A. 2012;109(51):20975-20979.
http://dx.doi.org/10.1073/pnas.1207715109