Artículo

Abriata, L.A.; Álvarez-Paggi, D.; Ledesma, G.N.; Blackburn, N.J.; Vila, A.J.; Murgida, D.H. "Alternative ground states enable pathway switching in biological electron transfer" (2012) Proceedings of the National Academy of Sciences of the United States of America. 109(43):17348-17353
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electron transfer is the simplest chemical reaction and constitutes the basis of a large variety of biological processes, such as photosynthesis and cellular respiration. Nature has evolved specific proteins and cofactors for these functions. The mechanisms optimizing biological electron transfer have been matter of intense debate, such as the role of the protein milieu between donor and acceptor sites. Here we propose a mechanism regulating long-range electron transfer in proteins. Specifically, we report a spectroscopic, electrochemical, and theoretical study on WT and single-mutant CuA redox centers from Thermus thermophilus, which shows that thermal fluctuations may populate two alternative ground-state electronic wave functions optimized for electron entry and exit, respectively, through two different and nearly perpendicular pathways. These findings suggest a unique role for alternative or "invisible" electronic ground states in directional electron transfer. Moreover, it is shown that this energy gap and, therefore, the equilibrium between ground states can be fine-tuned by minor perturbations, suggesting alternative ways through which protein-protein interactions and membrane potential may optimize and regulate electron-proton energy transduction.

Registro:

Documento: Artículo
Título:Alternative ground states enable pathway switching in biological electron transfer
Autor:Abriata, L.A.; Álvarez-Paggi, D.; Ledesma, G.N.; Blackburn, N.J.; Vila, A.J.; Murgida, D.H.
Filiación:Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Quimica Fisica de Los Materiales, Medio Ambiente y Energia (INQUIMAE), Universidad de Buenos Aires, C1428EHA Buenos Aires, Argentina
Instituto de Química Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
Institute of Environmental Health, Oregon Health and Sciences University, Beaverton, OR 97006, United States
Palabras clave:Cytochrome oxidase; Invisible states; NMR; Paramagnetic proteins; Spectroscopy; copper; proton; article; electrochemistry; electron transport; energy transfer; membrane potential; nonhuman; priority journal; protein protein interaction; protein transport; signal transduction; spectroscopy; Thermus thermophilus; Electron Transport; Nuclear Magnetic Resonance, Biomolecular; Oxidation-Reduction; Thermus thermophilus; X-Ray Absorption Spectroscopy
Año:2012
Volumen:109
Número:43
Página de inicio:17348
Página de fin:17353
DOI: http://dx.doi.org/10.1073/pnas.1204251109
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:copper, 15158-11-9, 7440-50-8; proton, 12408-02-5, 12586-59-3
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v109_n43_p17348_Abriata

Referencias:

  • Marcus, R.A., Sutin, N., Electron transfers in chemistry and biology (1985) Biochimica et Biophysica Acta - Reviews on Bioenergetics, 811 (3), pp. 265-322. , DOI 10.1016/0304-4173(85)90014-X
  • Moser, C.C., Keske, J.M., Warncke, K., Farid, R.S., Dutton, P.L., Nature of biological electron transfer (1992) Nature, 355 (6363), pp. 796-802
  • Gray, H.B., Winkler, J.R., Long-range electron transfer (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (10), pp. 3534-3539. , DOI 10.1073/pnas.0408029102
  • Hopfield, J.J., Electron transfer between biological molecules by thermally activated tunneling (1974) Proc Natl Acad Sci USA, 71 (9), pp. 3640-3644
  • Betts, J.N., Beratan, D.N., Onuchic, J.N., Mapping electron tunneling pathways: An algorithm that finds the "minimum length"/maximum coupling pathway between electron donors and acceptors in proteins (1992) J Am Chem Soc, 114, pp. 4043-4046
  • Skourtis, S.S., Balabin, I.A., Kawatsu, T., Beratan, D.N., Protein dynamics and electron transfer: Electronic decoherence and non-Condon effects (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (10), pp. 3552-3557. , DOI 10.1073/pnas.0409047102
  • Skourtis, S.S., Waldeck, D.H., Beratan, D.N., Fluctuations in biological and bioinspired electron-transfer reactions (2010) Annu Rev Phys Chem, 61, pp. 461-485
  • Balabin, I.A., Beratan, D.N., Skourtis, S.S., Persistence of structure over fluctuations in biological electron-transfer reactions (2008) Phys Rev Lett, 101 (15), p. 158102
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., Protein electron transfer rates set by the bridging secondary and tertiary structure (1991) Science, 252 (5010), pp. 1285-1288
  • Prytkova, T.R., Kurnikov, I.V., Beratan, D.N., Ab initio based calculations of electron-transfer rates in metalloproteins (2005) Journal of Physical Chemistry B, 109 (4), pp. 1618-1625. , DOI 10.1021/jp0457491
  • Ramirez, B.E., Malmstrom, B.G., Winkler, J.R., Gray, H.B., The currents of life: The terminal electron-transfer complex of respiration (1995) Proceedings of the National Academy of Sciences of the United States of America, 92 (26), pp. 11949-11951. , DOI 10.1073/pnas.92.26.11949
  • Farver, O., Chen, Y., Fee, J.A., Pecht, I., Electron transfer among the CuA-, heme b - And a 3-centers of Thermus thermophilus cytochrome ba3 (2006) FEBS Lett, 580 (14), pp. 3417-3421
  • Muresanu, L., The electron transfer complex between cytochrome c552 and the CuA domain of the Thermus thermophilus ba3 oxidase. A combined NMR and computational approach (2006) J Biol Chem, 281 (20), pp. 14503-14513
  • Brzezinski, P., Internal electron-transfer reactions in cytochrome c oxidase (1996) Biochemistry, 35 (18), pp. 5611-5615
  • Randall, D.W., Gamelin, D.R., LaCroix, L.B., Solomon, E.I., Electronic structure contributions to electron transfer in blue Cu and Cu(A) (2000) J Biol Inorg Chem, 5 (1), pp. 16-29
  • Gorelsky, S.I., Xie, X., Chen, Y., Fee, J.A., Solomon, E.I., The two-state issue in the mixed-valence binuclear CuA center in cytochrome C oxidase and N2O reductase (2006) J Am Chem Soc, 128 (51), pp. 16452-16453
  • Olsson, M.H.M., Ryde, U., Geometry, reduction potential, and reorganization energy of the binuclear Cu(A) site, studied by density functional theory (2001) J Am Chem Soc, 123 (32), pp. 7866-7876
  • Abriata, L.A., Ledesma, G.N., Pierattelli, R., Vila, A.J., Electronic structure of the ground and excited states of the Cu (A) site by NMR spectroscopy (2009) J Am Chem Soc, 131 (5), pp. 1939-1946
  • Salgado, J., Warmerdam, G., Bubacco, L., Canters, G.W., Understanding the electronic properties of the CuA site from the soluble domain of cytochrome c oxidase through paramagnetic 1H NMR (1998) Biochemistry, 37 (20), pp. 7378-7389
  • Bertini, I., The CuA center of a soluble domain from Thermus cytochrome ba 3. An NMR investigation of the paramagnetic protein (1996) J Am Chem Soc, 118, pp. 11658-11659
  • Ledesma, G.N., Murgida, D.H., Hoang, K.L., Wackerbarth, H., Ulstrup, J., Costa-Filho, A.J., Vila, A.J., The met axial ligand determines the redox potential in CuA sites (2007) Journal of the American Chemical Society, 129 (39), pp. 11884-11885. , DOI 10.1021/ja0731221
  • Xie, X., Perturbations to the geometric and electronic structure of the Cu A site: Factors that influence delocalization and their contributions to electron transfer (2008) J Am Chem Soc, 130 (15), pp. 5194-5205
  • Gamelin, D.R., Randall, D.W., Hay, M.T., Houser, R.P., Mulder, T.C., Canters, G.W., De Vries, S., Solomon, E.I., Spectroscopy of mixed-valence Cu(A)-type centers: Ligand-field control of ground-state properties related to electron transfer (1998) Journal of the American Chemical Society, 120 (21), pp. 5246-5263. , DOI 10.1021/ja973161k
  • Honeychurch, M.J., Effect of electron-transfer rate and reorganization energy on the cyclic voltammetric response of redox adsorbates (1999) Langmuir, 15, pp. 5158-5163
  • Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems (1979) J Electroanal Chem Interfac, 101, pp. 19-28
  • DeBeer George, S., A quantitative description of the ground-state wave function of Cu (A)by X-ray absorption spectroscopy: Comparison to plastocyanin and relevance to electron transfer (2001) J Am Chem Soc, 123 (24), pp. 5757-5767
  • Galinato, M.G.I., Heme-protein vibrational couplings in cytochrome c provide a dynamic link that connects the heme-iron and the protein surface (2012) Proc Natl Acad Sci USA, 109 (23), pp. 8896-8900
  • Gray, K.A., Davidson, V.L., Knaff, D.B., Complex formation between methylamine dehydrogenase and amicyanin from Paracoccus denitrificans (1988) J Biol Chem, 263 (28), pp. 13987-13990
  • Giudici-Orticoni, M.T., Guerlesquin, F., Bruschi, M., Nitschke, W., Interaction-induced redox switch in the electron transfer complex rusticyanin-cytochrome c(4) (1999) J Biol Chem, 274 (43), pp. 30365-30369
  • Diaz-Moreno, I., Diaz-Quintana, A., Diaz-Moreno, S., Subias, G., De La, R.M.A., Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry (2006) FEBS Letters, 580 (26), pp. 6187-6194. , DOI 10.1016/j.febslet.2006.10.020, PII S0014579306012324
  • Kranich, A., Ly, H.K., Hildebrandt, P., Murgida, D.H., Direct observation of the gating step in protein electron transfer: Electric-field-controlled protein dynamics (2008) J Am Chem Soc, 130 (30), pp. 9844-9848
  • Alvarez-Paggi, D., Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes (2010) J Am Chem Soc, 132 (16), pp. 5769-5778
  • Korzhnev, D.M., Kay, L.E., Probing invisible, low-populated states of protein molecules by relaxation dispersion NMR spectroscopy: An application to protein folding (2008) Acc Chem Res, 41 (3), pp. 442-451
  • Mittermaier, A., Kay, L.E., New tools provide new insights in NMR studies of protein dynamics (2006) Science, 312 (5771), pp. 224-228
  • Williams, P.A., The CuA domain of Thermus thermophilusba3-type cytochrome c oxidase at 1.6 Å resolution (1999) Nat Struct Mol Biol, 6, pp. 509-516
  • Case, D.A., (2010) AMBER 11, , Univ of California, San Francisco
  • Frisch, M.J., (2009) Gaussian 09, , revision A.02 Gaussian, Inc., Wallingford, CT
  • Izquierdo, J., Systematic ab initio study of the electronic and magnetic properties of different pure and mixed iron systems (2000) Phys Rev B, 61, pp. 13639-13646
  • Crespo, A., A DFT-based QM-MM approach designed for the treatment of large molecular systems: Application to chorismate mutase (2003) J Phys Chem B, 107, pp. 13728-13736
  • Beratan, D.N., Betts, J.N., Onuchic, J.N., Protein electron transfer rates set by the bridging secondary and tertiary structure (1991) Science, 252 (5010), pp. 1285-1288
  • Hunsicker-Wang, L.M., Pacoma, R.L., Chen, Y., Fee, J.A., Stout, C.D., A novel cryoprotection scheme for enhancing the diffraction of crystals of recombinant cytochrome ba3 oxidase from Thermus thermophilus (2005) Acta Crystallographica Section D: Biological Crystallography, 61 (3), pp. 340-343. , DOI 10.1107/S0907444904033906

Citas:

---------- APA ----------
Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J. & Murgida, D.H. (2012) . Alternative ground states enable pathway switching in biological electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 109(43), 17348-17353.
http://dx.doi.org/10.1073/pnas.1204251109
---------- CHICAGO ----------
Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H. "Alternative ground states enable pathway switching in biological electron transfer" . Proceedings of the National Academy of Sciences of the United States of America 109, no. 43 (2012) : 17348-17353.
http://dx.doi.org/10.1073/pnas.1204251109
---------- MLA ----------
Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H. "Alternative ground states enable pathway switching in biological electron transfer" . Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 43, 2012, pp. 17348-17353.
http://dx.doi.org/10.1073/pnas.1204251109
---------- VANCOUVER ----------
Abriata, L.A., Álvarez-Paggi, D., Ledesma, G.N., Blackburn, N.J., Vila, A.J., Murgida, D.H. Alternative ground states enable pathway switching in biological electron transfer. Proc. Natl. Acad. Sci. U. S. A. 2012;109(43):17348-17353.
http://dx.doi.org/10.1073/pnas.1204251109