Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Natural protein domains must be sufficiently stable to fold but often need to be locally unstable to function. Overall, strong energetic conflicts are minimized in native states satisfying the principle of minimal frustration. Local violations of this principle open up possibilities to form the complex multifunnel energy landscapes needed for large-scale conformational changes. We survey the local frustration patterns of allosteric domains and show that the regions that reconfigure are often enriched in patches of highly frustrated interactions, consistent both with the idea that these locally frustrated regions may act as specific hinges or that proteins may "crack" in these locations. On the other hand, the symmetry of multimeric protein assemblies allows near degeneracy by reconfiguring while maintaining minimally frustrated interactions. We also anecdotally examine some specific examples of complex conformational changes and speculate on the role of frustration in the kinetics of allosteric change.

Registro:

Documento: Artículo
Título:On the role of frustration in the energy landscapes of allosteric proteins
Autor:Ferreiro, D.U.; Hegler, J.A.; Komives, E.A.; Wolynes, P.G.
Filiación:Department of Biological Chemistry, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428EGA, Argentina
Department of Chemistry and Biochemistry, University of California at San Diego, San Diego, CA 92107, United States
Center for Theoretical Biological Physics, University of California at San Diego, San Diego, CA 92107, United States
Palabras clave:Minimal frustration principle; Protein folding; Protein function; article; priority journal; protein analysis; protein assembly; protein domain; protein interaction; protein localization; protein structure; Allosteric Regulation; Amino Acids; Databases, Protein; Models, Molecular; Protein Structure, Secondary; Protein Structure, Tertiary; Proteins; Thermodynamics
Año:2011
Volumen:108
Número:9
Página de inicio:3499
Página de fin:3503
DOI: http://dx.doi.org/10.1073/pnas.1018980108
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:Amino Acids; Proteins
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00278424_v108_n9_p3499_Ferreiro.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v108_n9_p3499_Ferreiro

Referencias:

  • Austin, R.H., Dynamics of ligand binding to myoglobin (1975) Biochemistry, 14, pp. 5355-5373
  • Min, W., Fluctuating enzymes: Lessons from single-molecule studies (2005) Acc Chem Res, 38, pp. 923-931
  • Frauenfelder, H., Sligar, S.G., Wolynes, P.G., The energy landscapes and motions of proteins (1991) Science, 254 (5038), pp. 1598-1603
  • Fersht, A.R., (1999) Structure and Mechanism in Protein Science, , Freeman, New York
  • Weber, G., (1992) Protein Interactions, , Chapman and Hall, New York
  • Bryngelson, J.D., Wolynes, P.G., Spin glasses and the statistical mechanics of protein folding (1987) Proc Natl Acad Sci USA, 84, pp. 7524-7528
  • Pande, V.S., Grosberg, A.Y., Tanaka, T., Statistical mechanics of simple models of protein folding and design (1997) Biophysical Journal, 73 (6), pp. 3192-3210
  • Plotkin, S.S., Wang, J., Wolynes, P.G., Correlated energy landscape model for finite, random heteropolymers (1996) Phys Rev E: Stat Phys, Plasmas, Fluids, Relat Interdiscip Top, 53, pp. 6271-6296
  • Shakhnovich, E.I., Gutin, A.M., Engineering of stable and fast-folding sequences of model proteins (1993) Proceedings of the National Academy of Sciences of the United States of America, 90 (15), pp. 7195-7199
  • Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G., Funnels, pathways, and the energy landscape of protein folding: A synthesis (1995) Proteins, 21, pp. 167-195
  • Leopold, P.E., Montal, M., Onuchic, J.N., Protein folding funnels: A kinetic approach to the sequence-structure relationship (1992) Proc Natl Acad Sci USA, 89, pp. 8721-8725
  • Miyashita, O., Onuchic, J.N., Wolynes, P.G., Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (22), pp. 12570-12575. , DOI 10.1073/pnas.2135471100
  • Okazaki, K.-I., Koga, N., Takada, S., Onuchic, J.N., Wolynes, P.G., Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations (2006) Proceedings of the National Academy of Sciences of the United States of America, 103 (32), pp. 11844-11849. , DOI 10.1073/pnas.0604375103
  • Hegler, J.A., Weinkam, P., Wolynes, P.G., The spectrum of biomolecular states and motions (2008) HFSP J, 2, pp. 307-313
  • Wolynes, P.G., Symmetry and the energy landscapes of biomolecules (1996) Proc Natl Acad Sci USA, 93, pp. 14249-14255
  • Monod, J., Wyman, J., Changeux, J.P., On the nature of allosteric transitions: A plausible model (1965) J Mol Biol, 12, pp. 88-118
  • Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G., Localizing frustration in native proteins and protein assemblies (2007) Proc Natl Acad Sci USA, 104, pp. 19819-19824
  • Daily, M.D., Gray, J.J., Local motions in a benchmark of allosteric proteins (2007) Proteins: Structure, Function and Genetics, 67 (2), pp. 385-399. , DOI 10.1002/prot.21300
  • Whitford, P.C., Onuchic, J.N., Wolynes, P.G., Energy landscape along an enzymatic reaction trajectory: Hinges or cracks? (2008) HFSP J, 2, pp. 61-64
  • Popovych, N., Sun, S., Ebright, R.H., Kalodimos, C.G., Dynamically driven protein allostery (2006) Nature Structural and Molecular Biology, 13 (9), pp. 831-838. , DOI 10.1038/nsmb1132, PII NSMB1132
  • Papoian, G.A., Ulander, J., Eastwood, M.P., Luthey-Schulten, Z., Wolynes, P.G., Water in protein structure prediction (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (10), pp. 3352-3357. , DOI 10.1073/pnas.0307851100
  • Papoian, G.A., Ulander, J., Wolynes, P.G., Role of water mediated interactions in protein-protein recognition landscapes (2003) Journal of the American Chemical Society, 125 (30), pp. 9170-9178. , DOI 10.1021/ja034729u
  • Gunasekaran, K., Ma, B., Nussinov, R., Is allostery an intrinsic property of all dynamic proteins? (2004) Proteins, 57, pp. 433-443
  • Henzler-Wildman, K.A., Thai, V., Lei, M., Ott, M., Wolf-Watz, M., Fenn, T., Pozharski, E., Kern, D., Intrinsic motions along an enzymatic reaction trajectory (2007) Nature, 450 (7171), pp. 838-844. , DOI 10.1038/nature06410, PII NATURE06410
  • Olsson, U., Wolf-Watz, M., Overlap between folding and functional energy landscapes for adenylate kinase conformational change (2010) Nat Commun, 1, p. 111
  • Whitford, P.C., Miyashita, O., Levy, Y., Onuchic, J.N., Conformational Transitions of Adenylate Kinase: Switching by Cracking (2007) Journal of Molecular Biology, 366 (5), pp. 1661-1671. , DOI 10.1016/j.jmb.2006.11.085, PII S0022283606016445
  • Lu, Q., Wang, J., Single molecule conformational dynamics of adenylate kinase: Energy landscape, structural correlations, and transition state ensembles (2008) Journal of the American Chemical Society, 130 (14), pp. 4772-4783. , DOI 10.1021/ja0780481
  • Mezard, M., Parisi, G., Virasoro, M.A., (1987) Spin Glass Theory and Beyond, , World Scientific, London
  • Li, W., Wolynes, P.G., Takada, S., Frustration, specific sequence dependence, and nonlinearity in large-amplitude fluctuations of allosteric proteins (2011) Proc Natl Acad Sci USA, 108, pp. 3504-3509
  • Zhang, H.J., Sheng, X.R., Pan, X.M., Zhou, J.M., Activation of adenylate kinase by denaturants is due to the increasing conformational flexibility at its active sites (1997) Biochem Biophys Res Commun, 238, pp. 382-386
  • Zhuravlev, P.I., Papoian, G.A., Protein functional landscapes, dynamics, allostery: A tortuous path toward a universal theoretical framework (2010) Q Rev Biophys, 43, pp. 295-332
  • Kuriyan, J., Eisenberg, D., The origin of protein interactions and allostery in colocalization (2007) Nature, 450 (7172), pp. 983-990. , DOI 10.1038/nature06524, PII NATURE06524
  • Gould, S.J., Lewontin, R.C., The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme (1979) Proceedings of the Royal Society of London - Biological Sciences, 205 (1161), pp. 581-598

Citas:

---------- APA ----------
Ferreiro, D.U., Hegler, J.A., Komives, E.A. & Wolynes, P.G. (2011) . On the role of frustration in the energy landscapes of allosteric proteins. Proceedings of the National Academy of Sciences of the United States of America, 108(9), 3499-3503.
http://dx.doi.org/10.1073/pnas.1018980108
---------- CHICAGO ----------
Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G. "On the role of frustration in the energy landscapes of allosteric proteins" . Proceedings of the National Academy of Sciences of the United States of America 108, no. 9 (2011) : 3499-3503.
http://dx.doi.org/10.1073/pnas.1018980108
---------- MLA ----------
Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G. "On the role of frustration in the energy landscapes of allosteric proteins" . Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 9, 2011, pp. 3499-3503.
http://dx.doi.org/10.1073/pnas.1018980108
---------- VANCOUVER ----------
Ferreiro, D.U., Hegler, J.A., Komives, E.A., Wolynes, P.G. On the role of frustration in the energy landscapes of allosteric proteins. Proc. Natl. Acad. Sci. U. S. A. 2011;108(9):3499-3503.
http://dx.doi.org/10.1073/pnas.1018980108