Artículo

Thomson, T.M.; Benjamin, K.R.; Bush, A.; Love, T.; Pincus, D.; Resnekov, O.; Yu, R.C.; Gordon, A.; Colman-Lerner, A.; Endy, D.; Brent, R. "Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range" (2011) Proceedings of the National Academy of Sciences of the United States of America. 108(50):20265-20270
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Although the proteins comprisingmany signaling systems are known, less is known about their numbers per cell. Existing measurements often vary by more than 10-fold. Here, we devised improved quantification methods to measure protein abundances in the Saccharomyces cerevisiae pheromone response pathway, an archetypical signaling system. These methods limited variation between independent measurements of protein abundance to a factor of two. We used these measurements together with quantitative models to identify and investigate behaviors of the pheromone response system sensitive to precise abundances. The difference between the maximum and basal signaling output (dynamic range) of the pheromone response MAPK cascade was strongly sensitive to the abundance of Ste5, the MAPK scaffold protein, and absolute system output depended on the amount of Fus3, the MAPK. Additional analysis and experiment suggest that scaffold abundance sets a tradeoff between maximum system output and system dynamic range, a prediction supported by recent experiments.

Registro:

Documento: Artículo
Título:Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range
Autor:Thomson, T.M.; Benjamin, K.R.; Bush, A.; Love, T.; Pincus, D.; Resnekov, O.; Yu, R.C.; Gordon, A.; Colman-Lerner, A.; Endy, D.; Brent, R.
Filiación:Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
Molecular Sciences Institute, Berkeley, CA 94704, United States
Departamento de Fisiología, Biología Molecular Y Celular, Inst. de Fisiol., Biologia Molec. Y Neurociencias-Consejo de Invest. Cientificas Y Tec., Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Selventa, Cambridge, MA 02140, United States
Amyris Biotechnologies, Emeryville, CA 94608, United States
Healthy and Active before 5, Concord, CA 94518, United States
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, United States
Renaissance Technologies, East Setauket, NY 11733, United States
Department of Bioengineering, Stanford University, Stanford, CA 94305, United States
Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
Palabras clave:Genetic algorithmic model optimization; Quantitative immunoblotting; Single-cell fluorescence quantification; guanine nucleotide binding protein; hybrid protein; mitogen activated protein kinase; pheromone; scaffold protein; article; cell cycle; computer model; enzyme activation; fluorescence; genetic algorithm; immunoblotting; nonhuman; polymerase chain reaction; priority journal; protein analysis; quantitative analysis; reporter gene; Saccharomyces cerevisiae; signal transduction; yeast; Fluorescence; Immunoblotting; MAP Kinase Signaling System; Models, Biological; Pheromones; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Signal Transduction; Systems Biology
Año:2011
Volumen:108
Número:50
Página de inicio:20265
Página de fin:20270
DOI: http://dx.doi.org/10.1073/pnas.1004042108
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:mitogen activated protein kinase, 142243-02-5; Pheromones; Saccharomyces cerevisiae Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v108_n50_p20265_Thomson

Referencias:

  • Dohlman, H.G., Thorner, J.W., Regulation of G protein - Initiated signal transduction in yeast: Paradigms and principles (2001) Annual Review of Biochemistry, 70, pp. 703-754. , DOI 10.1146/annurev.biochem.70.1.703
  • Colman-Lerner, A., Gordon, A., Serra, E., Chin, T., Resnekov, O., Endy, D., Pesce, C.G., Brent, R., Regulated cell-to-cell variation in a cell-fate decision system (2005) Nature, 437 (7059), pp. 699-706. , DOI 10.1038/nature03998, PII N03998
  • Yu, R.C., Negative feedback that improves information transmission in yeast signalling (2008) Nature, 456, pp. 755-761
  • Elion, E.A., Grisafi, P.L., Fink, G.R., FUS3 encodes a cdc2+/CDC28-related kinase required for the transition from mitosis into conjugation (1990) Cell, 60, pp. 649-664
  • Guo, M., Aston, C., Burchett, S.A., Dyke, C., Fields, S., Rajarao, S.J.R., Uetz, P., Dohlman, H.G., The yeast G protein alpha subunit Gpa1 transmits a signal through an RNA binding effector protein Scp160 (2003) Molecular Cell, 12 (2), pp. 517-524. , DOI 10.1016/S1097-2765(03)00307-1
  • Levchenko, A., Bruck, J., Sternberg, P.W., Scaffold proteins (2000) Proc Natl Acad Sci USA, 97, pp. 5818-5823. , may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties
  • Chapman, S.A., Asthagiri, A.R., Quantitative effect of scaffold abundance on signal propagation (2009) Mol Syst Biol, 5, p. 313
  • Cacace, A.M., Michaud, N.R., Therrien, M., Mathes, K., Copeland, T., Rubin, G.M., Morrison, D.K., Identification of constitutive and Ras-inducible phosphorylation sites of KSR: Implications for 14-3-3 binding, mitogen-activated protein kinase binding, and KSR overexpression (1999) Molecular and Cellular Biology, 19 (1), pp. 229-240
  • Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, E.K., Weissman, J.S., Global analysis of protein expression in yeast (2003) Nature, 425 (6959), pp. 737-741. , DOI 10.1038/nature02046
  • Hao, N., Yildirim, N., Wang, Y., Elston, T.C., Dohlman, H.G., Regulators of G protein signaling and transient activation of signaling: Experimental and computational analysis reveals negative and positive feedback controls on G protein activity (2003) Journal of Biological Chemistry, 278 (47), pp. 46506-46515. , DOI 10.1074/jbc.M308432200
  • Maeder, C.I., Hink, M.A., Kinkhabwala, A., Mayr, R., Bastiaens, P.I.H., Knop, M., Spatial regulation of Fus3 MAP kinase activity through a reaction-diffusion mechanism in yeast pheromone signalling (2007) Nature Cell Biology, 9 (11), pp. 1319-1326. , DOI 10.1038/ncb1652, PII NCB1652
  • Slaughter, B.D., Schwartz, J.W., Li, R., Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging (2007) Proc Natl Acad Sci USA, 104, pp. 20320-20325
  • Bardwell, L., Cook, J.G., Chang, E.C., Cairns, B.R., Thorner, J., Signaling in the yeast pheromone response pathway: Specific and high-affinity interaction of the mitogen-activated protein (MAP) kinases Kss1 and Fus3 with the upstream MAP kinase kinase Ste7 (1996) Mol Cell Biol, 16, pp. 3637-3650
  • Clark, C.D., Palzkill, T., Botstein, D., Systematic mutagenesis of the yeast mating pheromone receptor third intracellular loop (1994) Journal of Biological Chemistry, 269 (12), pp. 8831-8841
  • Raths, S.K., Naider, F., Becker, J.M., Peptide analogues compete with the binding of alpha-factor to its receptor in Saccharomyces cerevisiae (1988) J Biol Chem, 263, pp. 17333-17341
  • Wu, J.Q., Pollard, T.D., Counting cytokinesis proteins globally and locally in fission yeast (2005) Science, 310, pp. 310-314
  • Coligan, J.E., (1996) Current Protocols in Protein Science, , Wiley, New York
  • Yaffe, M.P., Schatz, G., Two nuclear mutations that block mitochondrial protein import in yeast (1984) Proceedings of the National Academy of Sciences of the United States of America, 81 (15 I), pp. 4819-4823
  • Gingrich, J.C., Davis, D.R., Nguyen, Q., Multiplex detection and quantitation of proteins on western blots using fluorescent probes (2000) Biotechniques, 29, pp. 636-642
  • Bardwell, L., Mechanisms of MAPK signalling specificity (2006) Biochem Soc Trans, 34, pp. 837-841
  • Blondel, M., Nuclear-specific degradation of Far1 is controlled by the localization of the F-box protein Cdc4 (2000) EMBO J, 19, pp. 6085-6097
  • Roberts, C.J., Nelson, B., Marton, M.J., Stoughton, R., Meyer, M.R., Bennett, H.A., He, Y.D., Friend, S.H., Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles (2000) Science, 287 (5454), pp. 873-880. , DOI 10.1126/science.287.5454.873
  • Gordon, A., Colman-Lerner, A., Chin, T.E., Benjamin, K.R., Yu, R.C., Brent, R., Single-cell quantification of molecules and rates using open-source microscope-based cytometry (2007) Nature Methods, 4 (2), pp. 175-181. , DOI 10.1038/nmeth1008, PII NMETH1008
  • Newman, J.R., Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise (2006) Nature, 441, pp. 840-846
  • Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O'Shea, E., Pilpel, Y., Barkai, N., Noise in protein expression scales with natural protein abundance (2006) Nature Genetics, 38 (6), pp. 636-643. , DOI 10.1038/ng1807, PII N1807
  • Thomson, T.M., (2008) Models and Analysis of Yeast Mating Response: Tools for Model Building, from Documentation to Time-dependent Stimulation, , PhD thesis (Massachusetts Institute of Technology, Cambridge, MA)
  • Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S., BioNetGen: Software for rule-based modeling of signal transduction based on the interactions of molecular domains (2004) Bioinformatics, 20 (17), pp. 3289-3291. , DOI 10.1093/bioinformatics/bth378
  • Yi, T.-M., Kitano, H., Simon, M.I., A quantitative characterization of the yeast heterotrimeric G protein cycle (2003) Proceedings of the National Academy of Sciences of the United States of America, 100 (19), pp. 10764-10769. , DOI 10.1073/pnas.1834247100
  • Kofahl, B., Klipp, E., Modelling the dynamics of the yeast pheromone pathway (2004) Yeast, 21 (10), pp. 831-850. , DOI 10.1002/yea.1122
  • Shao, D., Zheng, W., Qiu, W., Ouyang, Q., Tang, C., Dynamic studies of scaffold-dependent mating pathway in yeast (2006) Biophysical Journal, 91 (11), pp. 3986-4001. , http://www.biophysj.org/cgi/reprint/91/11/3986.pdf, DOI 10.1529/biophysj.106.081661
  • Hilioti, Z., Oscillatory phosphorylation of yeast Fus3 MAP kinase controls periodic gene expression and morphogenesis (2008) Curr Biol, 18, pp. 1700-1706
  • Koza, J.R., (1992) Genetic Programming: on the Programming of Computers by Means of Natural Selection, , MIT Press, Cambridge, MA
  • Moles, C.G., Mendes, P., Banga, J.R., Parameter estimation in biochemical pathways: A comparison of global optimization methods (2003) Genome Research, 13 (11), pp. 2467-2474. , DOI 10.1101/gr.1262503
  • Schwacke, J.H., Voit, E.O., The potential for signal integration and processing in interacting MAP kinase cascades (2007) Journal of Theoretical Biology, 246 (4), pp. 604-620. , DOI 10.1016/j.jtbi.2006.12.035, PII S0022519306006035
  • Kusari, A.B., Molina, D.M., Sabbagh Jr., W., Lau, C.S., Bardwell, L., A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1 (2004) Journal of Cell Biology, 164 (2), pp. 267-277. , DOI 10.1083/jcb.200310021
  • Horowitz, P., Hill, W., (1989) The Art of Electronics, , Cambridge University Press, Cambridge, UK
  • Pincus, D., Benjamin, K., Burbulis, I., Tsong, A.E., Resnekov, O., Reagents for investigating MAPK signalling in model yeast species (2010) Yeast, 27, pp. 423-430
  • Esch, R.K., Errede, B., Pheromone induction promotes Ste11 degradation through a MAPK feedback and ubiquitin-dependent mechanism (2002) Proceedings of the National Academy of Sciences of the United States of America, 99 (14), pp. 9160-9165. , DOI 10.1073/pnas.142034399
  • Burack, W.R., Shaw, A.S., Signal transduction: Hanging on a scaffold (2000) Current Opinion in Cell Biology, 12 (2), pp. 211-216. , DOI 10.1016/S0955-0674(99)00078-2
  • Yildirim, N., Hao, N., Dohlman, H.G., Elston, T.C., Mathematical modeling of RGS and G-protein regulation in yeast (2004) Methods in Enzymology, 389, pp. 383-398. , DOI 10.1016/S0076-6879(04)89023-2, PII S0076687904890232
  • Garrenton, L.S., Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence (2009) Mol Cell Biol, 29, pp. 582-601
  • Peter, M., Gartner, A., Horecka, J., Ammerer, G., Herskowitz, I., FAR1 links the signal transduction pathway to the cell cycle machinery in yeast (1993) Cell, 73, pp. 747-760
  • Legras, J.-L., Merdinoglu, D., Cornuet, J.-M., Karst, F., Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history (2007) Molecular Ecology, 16 (10), pp. 2091-2102. , DOI 10.1111/j.1365-294X.2007.03266.x
  • Thomas, B.J., Rothstein, R., Elevated recombination rates in transcriptionally active DNA (1989) Cell, 56, pp. 619-630
  • Guthrie, C., Fink, G.R., (2002) Guide to Yeast Genetics and Molecular and Cell Biology, , Wiley, New York
  • Longtine, M.S., McKenzie III, A., Demarini, D.J., Shah, N.G., Wach, A., Brachat, A., Philippsen, P., Pringle, J.R., Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae (1998) Yeast, 14 (10), pp. 953-961. , DOI 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
  • Brun, R., Couet, O., Vandroni, C., Zanarini, O., (1989) PAW Physics Analysis Workstation. CERN Program Library Entry Q121, , CERN Geneva, Geneva
  • Inouye, C., Dhillon, N., Thorner, J., Ste5 RING-H2 domain: Role in Ste4-promoted oligomerization for yeast pheromone signaling (1997) Science, 278 (5335), pp. 103-106. , DOI 10.1126/science.278.5335.103

Citas:

---------- APA ----------
Thomson, T.M., Benjamin, K.R., Bush, A., Love, T., Pincus, D., Resnekov, O., Yu, R.C.,..., Brent, R. (2011) . Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20265-20270.
http://dx.doi.org/10.1073/pnas.1004042108
---------- CHICAGO ----------
Thomson, T.M., Benjamin, K.R., Bush, A., Love, T., Pincus, D., Resnekov, O., et al. "Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range" . Proceedings of the National Academy of Sciences of the United States of America 108, no. 50 (2011) : 20265-20270.
http://dx.doi.org/10.1073/pnas.1004042108
---------- MLA ----------
Thomson, T.M., Benjamin, K.R., Bush, A., Love, T., Pincus, D., Resnekov, O., et al. "Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range" . Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 50, 2011, pp. 20265-20270.
http://dx.doi.org/10.1073/pnas.1004042108
---------- VANCOUVER ----------
Thomson, T.M., Benjamin, K.R., Bush, A., Love, T., Pincus, D., Resnekov, O., et al. Scaffold number in yeast signaling system sets tradeoff between system output and dynamic range. Proc. Natl. Acad. Sci. U. S. A. 2011;108(50):20265-20270.
http://dx.doi.org/10.1073/pnas.1004042108