Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Long-term memory (LTM) consolidation requires the synthesis of plasticity-related proteins (PRPs). In addition, we have shown recently that LTM formation also requires the setting of a "learning tag" able to capture those PRPs. Weak training, which results only in short-term memory, can set a tag to use PRPs derived from a temporal-spatial closely related event to promote LTM formation. Here, we studied the involvement of glutamatergic, dopaminergic, and noradrenergic inputs on the setting of an inhibitory avoidance (IA) learning tag and the synthesis of PRPs. Rats explored an open field (PRP donor) followed by weak (tag inducer) or strong (tag inducer plus PRP donor) IA training. Throughout pharmacological interventions around open-field and/or IA sessions, we found that hippocampal dopamine D1/D5- and β-adrenergic receptors are specifically required to induce PRP synthesis. Moreover, activation of the glutamatergic NMDA receptors is required for setting the learning tags, and this machinery further required α-Ca 2+/calmodulin-dependent protein kinase II and PKA but not ERK1/2 activity. Together, the present findings emphasize an essential role of the induction of PRPs and learning tags for LTM formation. The existence of only the PRP or the tag was insufficient for stabilization of the mnemonic trace.

Registro:

Documento: Artículo
Título:Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation
Autor:Moncada, D.; Ballarini, F.; Martinez, M.C.; Frey, J.U.; Viola, H.
Filiación:Instituto de Biología Celular Y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Cientificas Y Tecnicas de Argentina, CP 1121 Buenos Aires, Argentina
Department of Neurophysiology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Departamento de Fisiología, Biología Molecular Y Celular, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, CP 1428 Buenos Aires, Argentina
Palabras clave:CA1; Dentate gyrus; Synaptic tagging; beta adrenergic receptor; calcium calmodulin dependent protein kinase II; dopamine 1 receptor; dopamine 5 receptor; n methyl dextro aspartic acid receptor; neurotransmitter; animal experiment; article; controlled study; dopaminergic system; dopaminergic transmission; long term memory; male; memory consolidation; molecule; nonhuman; noradrenergic system; priority journal; protein synthesis; rat; short term memory; 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 2-Amino-5-phosphonovalerate; Adrenergic beta-Antagonists; Animals; Avoidance Learning; Benzazepines; CA1 Region, Hippocampal; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Dobutamine; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Exploratory Behavior; Male; Memory, Long-Term; Memory, Short-Term; Neuronal Plasticity; Propranolol; Rats; Rats, Wistar; Receptors, Adrenergic, beta; Receptors, Dopamine D1; Receptors, Dopamine D5; Receptors, N-Methyl-D-Aspartate; Rattus
Año:2011
Volumen:108
Número:31
Página de inicio:12931
Página de fin:12936
DOI: http://dx.doi.org/10.1073/pnas.1104495108
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:calcium calmodulin dependent protein kinase II, 141467-21-2; 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine, 84477-87-2; 2-Amino-5-phosphonovalerate, 76726-92-6; 2-amino-5-phosphono-3-pentenoic acid, 118492-04-9; Adrenergic beta-Antagonists; Benzazepines; Calcium-Calmodulin-Dependent Protein Kinase Type 2, 2.7.11.17; Dobutamine, 34368-04-2; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; KN 62, 127191-97-3; Propranolol, 525-66-6; Receptors, Adrenergic, beta; Receptors, Dopamine D1; Receptors, Dopamine D5, 137750-35-7; Receptors, N-Methyl-D-Aspartate; SCH 23390
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00278424_v108_n31_p12931_Moncada.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v108_n31_p12931_Moncada

Referencias:

  • Moncada, D., Viola, H., Induction of long-term memory by exposure to novelty requires protein synthesis: Evidence for a behavioral tagging (2007) J Neurosci, 27, pp. 7476-7481
  • Ballarini, F., Moncada, D., Martinez, M.C., Alen, N., Viola, H., Behavioral tagging is a general mechanism of long-term memory formation (2009) Proc Natl Acad Sci USA, 106, pp. 14599-14604
  • Lisman, J.E., Grace, A.A., The hippocampal-VTA loop: Controlling the entry of information into long-term memory (2005) Neuron, 46, pp. 703-713
  • Klukowski, G., Harley, C.W., Locus coeruleus activation induces perforant pathevoked population spike potentiation in the dentate gyrus of awake rat (1994) Exp Brain Res, 102, pp. 165-170
  • Sara, S.J., Vankov, A., Hervé, A., Locus coeruleus-evoked responses in behaving rats: A clue to the role of noradrenaline in memory (1994) Brain Res Bull, 35, pp. 457-465
  • Kitchigina, V., Vankov, A., Harley, C., Sara, S.J., Novelty-elicited, noradrenaline-dependent enhancement of excitability in the dentate gyrus (1997) Eur J Neurosci, 9, pp. 41-47
  • Frey, U., Morris, R.G., Synaptic tagging and long-term potentiation (1997) Nature, 385, pp. 533-536
  • Frey, U., Morris, R.G., Weak before strong: Dissociating synaptic tagging and plasticity-factor accounts of late-LTP (1998) Neuropharmacology, 37, pp. 545-552
  • Ayyagari, V., Harrell, L.E., Parsons, D.S., Interaction of neurotransmitter systems in the hippocampus: A study of some behavioral effects of hippocampal sympathetic ingrowth (1991) J Neurosci, 11, pp. 2848-2854
  • Adriani, W., N-methyl-D-aspartate and dopamine receptor involvement in the modulation of locomotor activity and memory processes (1998) Exp Brain Res, 123, pp. 52-59
  • Vianna, M.R., Role of hippocampal signaling pathways in long-term memory formation of a nonassociative learning task in the rat (2000) Learn Mem, 7, pp. 333-340
  • Izquierdo, I., Different molecular cascades in different sites of the brain control memory consolidation (2006) Trends Neurosci, 29, pp. 496-505
  • Gasbarri, A., Verney, C., Innocenzi, R., Campana, E., Pacitti, C., Mesolimbic dopaminergic neurons innervating the hippocampal formation in the rat: A combined retrograde tracing and immunohistochemical study (1994) Brain Res, 668, pp. 71-79
  • Sara, S.J., The locus coeruleus and noradrenergic modulation of cognition (2009) Nat Rev Neurosci, 10, pp. 211-223
  • Adrover, M.F., Hippocampal infection with HSV-1-derived vectors expressing an NMDAR1 antisense modifies behavior (2003) Genes Brain Behav, 2, pp. 103-113
  • Nakazawa, K., Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience (2003) Neuron, 38, pp. 305-315
  • Bethus, I., Tse, D., Morris, R.G.M., Dopamine and memory: Modulation of the persistence of memory for novel hippocampal NMDA receptor-dependent paired associates (2010) J Neurosci, 30, pp. 1610-1618
  • Goelet, P., Castellucci, V.F., Schacher, S., Kandel, E.R., The long and the short of longterm memory - A molecular framework (1986) Nature, 322, pp. 419-422
  • Izquierdo, L.A., Molecular pharmacological dissection of short- And longterm memory (2002) Cell Mol Neurobiol, 22, pp. 269-287
  • Balderas, I., The consolidation of object and context recognition memory involve different regions of the temporal lobe (2008) Learn Mem, 15, pp. 618-624
  • Martin, K.C., Kosik, K.S., Synaptic tagging - Who's it? (2002) Nat Rev Neurosci, 3, pp. 813-820
  • Frey, S., Frey, J.U., 'Synaptic tagging' and 'cross-tagging' and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation (2008) Prog Brain Res, 169, pp. 117-143
  • Barco, A., Alarcon, J.M., Kandel, E.R., Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture (2002) Cell, 108, pp. 689-703
  • Young, J.Z., Isiegas, C., Abel, T., Nguyen, P.V., Metaplasticity of the late-phase of long-term potentiation: A critical role for protein kinase A in synaptic tagging (2006) Eur J Neurosci, 23, pp. 1784-1794
  • Sajikumar, S., Navakkode, S., Frey, J.U., Identification of compartment- And process-specific molecules required for "synaptic tagging" during long-term potentiation and long-term depression in hippocampal CA1 (2007) J Neurosci, 27, pp. 5068-5080
  • Roberson, E.D., Sweatt, J.D., Transient activation of cyclic AMP-dependent protein kinase during hippocampal long-term potentiation (1996) J Biol Chem, 271, pp. 30436-30441
  • Banko, J.L., Hou, L., Klann, E., NMDA receptor activation results in PKA- And ERK-dependent Mnk1 activation and increased eIF4E phosphorylation in hippocampal area CA1 (2004) J Neurochem, 91, pp. 462-470
  • Zhou, Y., Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning (2007) J Neurosci, 27, pp. 13843-13853
  • Gao, C., Hippocampal NMDA receptor subunits differentially regulate fear memory formation and neuronal signal propagation (2010) Hippocampus, 20, pp. 1072-1082
  • Igaz, L.M., Vianna, M.R.M., Medina, J.H., Izquierdo, I., Two time periods of hippocampal mRNA synthesis are required for memory consolidation of fear-motivated learning (2002) J Neurosci, 22, pp. 6781-6789
  • Cammarota, M., Rapid and transient learning-associated increase in NMDA NR1 subunit in the rat hippocampus (2000) Neurochem Res, 25, pp. 567-572
  • Im, H.-I., Post-training dephosphorylation of eEF-2 promotes protein synthesis for memory consolidation (2009) PLoS ONE, 4, pp. e7424
  • Frey, U., Morris, R.G., Synaptic tagging: Implications for late maintenance of hippocampal long-term potentiation (1998) Trends Neurosci, 21, pp. 181-188
  • O'Carroll, C.M., Morris, R.G.M., Heterosynaptic co-activation of glutamatergic and dopaminergic afferents is required to induce persistent long-term potentiation (2004) Neuropharmacology, 47, pp. 324-332
  • Govindarajan, A., Kelleher, R.J., Tonegawa, S., A clustered plasticity model of longterm memory engrams (2006) Nat Rev Neurosci, 7, pp. 575-583
  • Reymann, K.G., Frey, J.U., The late maintenance of hippocampal LTP: Requirements, phases, 'synaptic tagging', 'late-associativity' and implications (2007) Neuropharmacology, 52, pp. 24-40
  • Frey, U., Matthies, H., Reymann, K.G., Matthies, H., The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro (1991) Neurosci Lett, 129, pp. 111-114
  • Whitlock, J.R., Heynen, A.J., Shuler, M.G., Bear, M.F., Learning induces long-term potentiation in the hippocampus (2006) Science, 313, pp. 1093-1097
  • Redondo, R.L., Synaptic tagging and capture: Differential role of distinct calcium/calmodulin kinases in protein synthesis-dependent long-term potentiation (2010) J Neurosci, 30, pp. 4981-4989
  • Sajikumar, S., Frey, J.U., Resetting of 'synaptic tags' is time- And activity-dependent in rat hippocampal CA1 in vitro (2004) Neuroscience, 129, pp. 503-507
  • Redondo, R.L., Morris, R.G.M., Making memories last: The synaptic tagging and capture hypothesis (2011) Nat Rev Neurosci, 12, pp. 17-30
  • Li, S., Cullen, W.K., Anwyl, R., Rowan, M.J., Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty (2003) Nat Neurosci, 6, pp. 526-531
  • Straube, T., Korz, V., Balschun, D., Frey, J.U., Requirement of beta-adrenergic receptor activation and protein synthesis for LTP-reinforcement by novelty in rat dentate gyrus (2003) J Physiol, 552, pp. 953-960
  • Frey, U., Huang, Y.Y., Kandel, E.R., Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons (1993) Science, 260, pp. 1661-1664
  • Huang, Y.Y., Kandel, E.R., Modulation of both the early and the late phase of mossy fiber LTP by the activation of beta-adrenergic receptors (1996) Neuron, 16, pp. 611-617
  • Paxinos, G., Watson, C., (1997) The Rat Brain in Stereotaxic Coordinates, , Academic, San Diego

Citas:

---------- APA ----------
Moncada, D., Ballarini, F., Martinez, M.C., Frey, J.U. & Viola, H. (2011) . Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proceedings of the National Academy of Sciences of the United States of America, 108(31), 12931-12936.
http://dx.doi.org/10.1073/pnas.1104495108
---------- CHICAGO ----------
Moncada, D., Ballarini, F., Martinez, M.C., Frey, J.U., Viola, H. "Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation" . Proceedings of the National Academy of Sciences of the United States of America 108, no. 31 (2011) : 12931-12936.
http://dx.doi.org/10.1073/pnas.1104495108
---------- MLA ----------
Moncada, D., Ballarini, F., Martinez, M.C., Frey, J.U., Viola, H. "Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation" . Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 31, 2011, pp. 12931-12936.
http://dx.doi.org/10.1073/pnas.1104495108
---------- VANCOUVER ----------
Moncada, D., Ballarini, F., Martinez, M.C., Frey, J.U., Viola, H. Identification of transmitter systems and learning tag molecules involved in behavioral tagging during memory formation. Proc. Natl. Acad. Sci. U. S. A. 2011;108(31):12931-12936.
http://dx.doi.org/10.1073/pnas.1104495108