Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Inhibition of bacterial gene expression by RNase P-directed cleavage is a promising strategy for the development of antibiotics and pharmacological agents that prevent expression of antibiotic resistance. The rise in multiresistant bacteria harboring AAC(6′)-Ib has seriously limited the effectiveness of amikacin and other aminoglycosides. We have recently shown that recombinant plasmids coding for external guide sequences (EGS), short antisense oligoribonucleotides (ORN) that elicit RNase P-mediated cleavage of a target mRNA, induce inhibition of expression of aac(6′)-Ib and concomitantly induce a significant decrease in the levels of resistance to amikacin. However, since ORN are rapidly degraded by nucleases, development of a viable RNase P-based antisense technology requires the design of nuclease resistant RNA analog EGSs. We have assayed a variety of ORN analogs of which selected LNA/DNA co-oligomers elicited RNase P-mediated cleavage of mRNA in vitro. Although we found an ideal configuration of LNA/DNA residues, there seems not to be a correlation between number of LNA substitutions and level of activity. Exogenous administration of as low as 50 nM of an LNA/DNA co-oligomer to the hyperpermeable E. coli AS19 harboring the aac(6′)-Ib inhibited growth in the presence of amikacin. Our experiments strongly suggest an RNase P-mediated mechanism in the observed antisense effect.

Registro:

Documento: Artículo
Título:Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria
Autor:Soler Bistué, A.J.C.; Martín, F.A.; Vozza, N.; Ha, H.; Joaquín, J.C.; Zorreguieta, A.; Tolmasky, M.E.
Filiación:Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas Y Técnicas, C1405BWE Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina
Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92834-6850, United States
Palabras clave:Aminoglycoside; Antibiotic resistance; Antisense; Nucleic acids analogs; RNase P; aac(6') Ib enzyme; amikacin; antisense oligonucleotide; bacterial DNA; bacterial enzyme; locked nucleic acid; messenger RNA; nuclease; oligoribonucleotide; ribonuclease; unclassified drug; antibiotic resistance; article; bacterial gene; controlled study; enzymatic degradation; Escherichia coli; gene expression; genetic analysis; growth inhibition; in vitro study; nonhuman; permeability; priority journal; Acetyltransferases; Amikacin; Base Sequence; DNA; Drug Resistance, Bacterial; Endocytosis; Escherichia coli; Oligonucleotides; Ribonuclease P; RNA, Messenger; Bacteria (microorganisms)
Año:2009
Volumen:106
Número:32
Página de inicio:13230
Página de fin:13235
DOI: http://dx.doi.org/10.1073/pnas.0906529106
Título revista:Proceedings of the National Academy of Sciences of the United States of America
Título revista abreviado:Proc. Natl. Acad. Sci. U. S. A.
ISSN:00278424
CODEN:PNASA
CAS:amikacin, 37517-28-5, 39831-55-5; nuclease, 9026-81-7; ribonuclease, 59794-03-5, 9001-99-4; Acetyltransferases, 2.3.1.-; Amikacin, 37517-28-5; DNA, 9007-49-2; Oligonucleotides; RNA, Messenger; Ribonuclease P, 3.1.26.5; locked nucleic acid
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_00278424_v106_n32_p13230_SolerBistue.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_00278424_v106_n32_p13230_SolerBistue

Referencias:

  • Tolmasky, M.E., Aminoglycoside-modifying enzymes: Characteristics, localization, and dissemination (2007) Enzyme-Mediated Resistance to Antibiotics: Mechanisms, Dissemination, and Prospects for Inhibition, pp. 35-52. , eds Bonomo R, Tolmasky ME (ASM Press, Washington, DC)
  • Vakulenko, S.B., Mobashery, S., Versatility of aminoglycosides and prospects for their future (2003) Clin Microbiol Rev, 16, pp. 430-450
  • O'Neill, A.J., New antibacterial agents for treating infections caused by multi-drug resistant Gram-negative bacteria (2008) Expert Opin Investig Drugs, 17, pp. 297-302
  • Taubes, G., The bacteria fight back (2008) Science, 321, pp. 356-361
  • Rasmussen, L.C., Sperling-Petersen, H.U., Mortensen, K.K., Hitting bacteria at the heart of the central dogma: Sequence-specific inhibition (2007) Microb Cell Fact, 6, p. 24
  • Woodford, N., Wareham, D.W., Tackling antibiotic resistance: A dose of common antisense? (2008) J Antimicrob Chemother
  • Altman, S., A view of RNase P (2007) Mol Biosyst, 3, pp. 604-607
  • Guerrier-Takada, C., Salavati, R., Altman, S., Phenotypic conversion of drug-resistant bacteria to drug sensitivity (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (16), pp. 8468-8472. , DOI 10.1073/pnas.94.16.8468
  • Kirsebom, L.A., RNase P RNA mediated cleavage: Substrate recognition and catalysis (2007) Biochimie, 89, pp. 1183-1194
  • Forster, A.C., Altman, S., External guide sequence for an RNA enzyme (1990) Science, 249 (4970), pp. 783-786
  • Ko, J.H., Izadjoo, M., Altman, S., Inhibition of expression of virulence genes of Yersinia pestis in Escherichia coli by external guide sequences and RNase P (2008) RNA, 14, pp. 1656-1662
  • McKinney, J.S., Zhang, H., Kubori, T., Galan, J.E., Altman, S., Disruption of type III secretion in Salmonella enterica serovar typhimurium by external guide sequences (2004) Nucleic Acids Research, 32 (2), pp. 848-854. , DOI 10.1093/nar/gkh219
  • Soler Bistue, A.J., External guide sequences targeting the aac(6′)-Ib mRNA induce inhibition of amikacin resistance (2007) Antimicrob Agents Chemother, 51, pp. 1918-1925
  • Kurreck, J., Antisense technologies. Improvement through novel chemical modifications (2003) Eur J Biochem, 270, pp. 1628-1644
  • Wahlestedt, C., Salmi, P., Good, L., Kela, J., Johnsson, T., Hokfelt, T., Broberger, C., Wengel, J., Potent and nontoxic antisense oligonucleotides containing locked nucleic acids (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (10), pp. 5633-5638. , DOI 10.1073/pnas.97.10.5633
  • Petersen, M., Wengel, J., LNA: A versatile tool for therapeutics and genomics (2003) Trends in Biotechnology, 21 (2), pp. 74-81. , DOI 10.1016/S0167-7799(02)00038-0
  • Elmen, J., Lindow, M., Schutz, S., Lawrence, M., Petri, A., Obad, S., Lindholm, M., Kauppinen, S., LNA-mediated microRNA silencing in non-human primates (2008) Nature, 452 (7189), pp. 896-899. , DOI 10.1038/nature06783, PII NATURE06783
  • Shen, N., Inactivation of expression of several genes in a variety of bacterial species by the EGS technology (2009) Proc Natl Acad Sci USA, 106, pp. 8163-8168
  • Perreault, J.P., Altman, S., Important 2′-hydroxyl groups in model substrates for M1 RNA, the catalytic RNA subunit of RNase P from Escherichia coli (1992) J Mol Biol, 226, pp. 399-409
  • Kirsebom, L.A., Svard, S.G., Base pairing between Escherichia coli RNase P RNA and its substrate (1994) EMBO J, 13, pp. 4870-4876
  • Svard, S.G., Kagardt, U., Kirsebom, L.A., Phylogenetic comparative mutational analysis of the base-pairing between RNase P RNA and its substrate (1996) RNA, 2 (5), pp. 463-472
  • Kurreck, J., Wyszko, E., Gillen, C., Erdmann, V.A., Design of antisense oligonucleotides stabilized by locked nucleic acids (2002) Nucleic Acids Research, 30 (9), pp. 1911-1918
  • Schmidt, K.S., Application of locked nucleic acids to improve aptamer in vivo stability and targeting function (2004) Nucleic Acids Res, 32, pp. 5757-5765
  • Fillion, P., Desjardins, A., Sayasith, K., Lagace, J., Encapsulation of DNA in negatively charged liposomes and inhibition of bacterial gene expression with fluid liposome-encapsulated antisense oligonucleotides (2001) Biochimica et Biophysica Acta - Biomembranes, 1515 (1), pp. 44-54. , DOI 10.1016/S0005-2736(01)00392-3, PII S0005273601003923
  • Eriksson, M., Nielsen, P.E., Good, L., Cell permeabilization and uptake of antisense peptide-peptide nucleic acid (PNA) into Escherichia coli (2002) Journal of Biological Chemistry, 277 (9), pp. 7144-7147. , DOI 10.1074/jbc.M106624200
  • Harth, G., Zamecnik, P.C., Tang, J.-Y., Tabatadze, D., Horwitz, M.A., Treatment of Mycobacterium tuberculosis with antisense oligonucleotides to glutamine synthetase mRNA inhibits glutamine synthetase activity, formation of the poly-L-glutamate/glutamine cell wall structure, and bacterial replication (2000) Proceedings of the National Academy of Sciences of the United States of America, 97 (1), pp. 418-423. , DOI 10.1073/pnas.97.1.418
  • Harth, G., Zamecnik, P.C., Tabatadze, D., Pierson, K., Horwitz, M.A., Hairpin extensions enhance the efficacy of mycolyl transferase-specific antisense oligonucleotides targeting Mycobacterium tuberculosis (2007) Proceedings of the National Academy of Sciences of the United States of America, 104 (17), pp. 7199-7204. , DOI 10.1073/pnas.0701725104
  • Kurupati, P., Tan, K.S.W., Kumarasinghe, G., Poh, C.L., Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant beta-lactamase-producing Klebsiella pneumoniae strain (2007) Antimicrobial Agents and Chemotherapy, 51 (3), pp. 805-811. , DOI 10.1128/AAC.00709-06
  • Nikravesh, A., Dryselius, R., Faridani, O.R., Goh, S., Sadeghizadeh, M., Behmanesh, M., Ganyu, A., Good, L., Antisense PNA accumulates in Escherichia coli and mediates a long post-antibiotic effect (2007) Molecular Therapy, 15 (8), pp. 1537-1542. , DOI 10.1038/sj.mt.6300209, PII 6300209
  • Tilley, L.D., Mellbye, B.L., Puckett, S.E., Iversen, P.L., Geller, B.L., Antisense peptide-phosphorodiamidate morpholino oligomer conjugate: Dose-response in mice infected with Escherichia coli (2007) J Antimicrob Chemother, 59, pp. 66-73
  • Hanahan, D., Studies on transformation of Escherichia coli with plasmids (1983) J Mol Biol, 166, pp. 557-580
  • Sekiguchi, M., Iida, S., Mutants of Escherichia coli permeable to actinomycin (1967) Proc Natl Acad Sci USA, 58 (6), pp. 2315-2320
  • Sarno, R., Ha, H., Weinsetel, N., Tolmasky, M.E., Inhibition of aminoglycoside 6′-N-acetyltransferase type Ib-mediated amikacin resistance by antisense oligodeoxynucleotides (2003) Antimicrobial Agents and Chemotherapy, 47 (10), pp. 3296-3304. , DOI 10.1128/AAC.47.10.3296-3304.2003
  • Li, Y., Guerrier-Takada, C., Altman, S., Targeted cleavage of mRNA in vitro by RNase P from Escherichia coli (1992) Proc Natl Acad Sci USA, 89, pp. 3185-3189

Citas:

---------- APA ----------
Soler Bistué, A.J.C., Martín, F.A., Vozza, N., Ha, H., Joaquín, J.C., Zorreguieta, A. & Tolmasky, M.E. (2009) . Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 106(32), 13230-13235.
http://dx.doi.org/10.1073/pnas.0906529106
---------- CHICAGO ----------
Soler Bistué, A.J.C., Martín, F.A., Vozza, N., Ha, H., Joaquín, J.C., Zorreguieta, A., et al. "Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria" . Proceedings of the National Academy of Sciences of the United States of America 106, no. 32 (2009) : 13230-13235.
http://dx.doi.org/10.1073/pnas.0906529106
---------- MLA ----------
Soler Bistué, A.J.C., Martín, F.A., Vozza, N., Ha, H., Joaquín, J.C., Zorreguieta, A., et al. "Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria" . Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 32, 2009, pp. 13230-13235.
http://dx.doi.org/10.1073/pnas.0906529106
---------- VANCOUVER ----------
Soler Bistué, A.J.C., Martín, F.A., Vozza, N., Ha, H., Joaquín, J.C., Zorreguieta, A., et al. Inhibition of aac(6′)-Ib-mediated amikacin resistance by nuclease-resistant external guide sequences in bacteria. Proc. Natl. Acad. Sci. U. S. A. 2009;106(32):13230-13235.
http://dx.doi.org/10.1073/pnas.0906529106